

Agilent U1251B und U1252B Digitales Handmultimeter

Benutzer- und Servicehandbuch

Hinweise

© Agilent Technologies, Inc. 2009 - 2012

Kein Teil dieses Handbuchs darf in beliebiger Form oder mit beliebigen Mitteln (inklusive Speicherung und Abruf auf elektronischem Wege sowie Übersetzung in eine fremde Sprache) ohne vorherige Zustimmung und schriftliche Einwilligung von Agilent Technologies, Inc. gemäß der Urheberrechtsgesetzgebung in den USA und international reproduziert werden.

Handbuchteilenummer

U1251-90037

Ausgabe

Neunte Auflage, 12. September 2012

Gedruckt in Malaysia

Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA

Technologielizenzen

Die in diesem Dokument beschriebene Hardware und/oder Software wird unter einer Lizenz bereitgestellt und kann nur gemäß der Lizenzbedingungen verwendet oder kopiert werden.

Hinweis zu eingeschränkten Rechten

U.S. Government Restricted Rights (eingeschränkte Rechte für die US-Regierung). Die der Bundesregierung gewährten Rechte bezüglich Software und technischer Daten gehen nicht über diese Rechte hinaus, die üblicherweise Endbenutzern gewährt werden. Agilent gewährt diese übliche kommerzielle Lizenz für Software und technische Daten gemäß FAR 12.211 (technische Daten) und 12.212 (Computersoftware) sowie, für das Department of Defense, DFARS 252.227-7015 (technische Daten — kommerzielle Objekte) und DFARS 227.7202-3 (Rechte bezüglich kommerzieller Computersoftware oder Computersoftware-Dokumentation).

Garantie

Das in diesem Dokument enthaltene Material wird im vorliegenden Zustand zur Verfügung gestellt und kann in zukünftigen Ausgaben ohne vorherige Ankündigung geändert werden. Darüber hinaus übernimmt Agilent im gesetzlich maximal zulässigen Rahmen keine Garantien, weder ausdrücklich noch stillschweigend, bezüglich dieses Handbuchs und beliebiger hierin enthaltener Informationen, inklusive aber nicht beschränkt auf stillschweigende Garantien hinsichtlich Marktgängigkeit und Eignung für einen bestimmten Zweck. Agilent übernimmt keine Haftung für Fehler oder beiläufig entstandene oder Folgesachäden in Verbindung mit Einrichtung, Nutzung oder Leistung dieses Dokuments oder beliebiger hierin enthaltener Informationen. Falls zwischen Agilent und dem Benutzer eine separate schriftliche Vereinbarung mit Garantiebedingungen bezüglich des in diesem **Dokument enthaltenen Materials** besteht, die zu diesen Bedingungen im Widerspruch stehen, gelten die Garantiebedingungen in der separaten Vereinbarung.

Zubehörgarantie

Agilent bietet eine Garantie für Produktzubehör von bis zu 3 Monaten ab dem Datum der Abnahme durch den Endbenutzer.

Standardkalibrierungsservice (optional)

Agilent bietet einen optionalen Kalibrierungsservicevertrag für eine Dauer von 3 Jahren ab dem Datum der Abnahme durch den Endbenutzer.

Sicherheitshinweise

VORSICHT

Ein Hinweis mit der Überschrift VOR-SICHT weist auf eine Gefahr hin. Er macht auf einen Betriebsablauf oder ein Verfahren aufmerksam, der bzw. das bei unsachgemäßer Durchführung zur Beschädigung des Produkts oder zum Verlust wichtiger Daten führen kann. Setzen Sie den Vorgang nach einem Hinweis mit der Überschrift VORSICHT nicht fort, wenn Sie die darin aufgeführten Hinweise nicht vollständig verstanden haben und einhalten können.

WARNUNG

Eine WARNUNG weist auf eine Gefahr hin. Sie macht auf einen Betriebsablauf oder ein Verfahren aufmerksam, der bzw. das bei unsachgemäßer Durchführung zu Verletzungen oder zum Tod führen kann. Setzen Sie den Vorgang nach einem Hinweise mit der Überschrift WARNUNG nicht fort, wenn Sie die darin aufgeführten Hinweise nicht vollständig verstanden haben und einhalten können.

Sicherheitssymbole

Die folgenden Symbole auf dem Gerät und in der Dokumentation deuten auf Vorkehrungen hin, die ausgeführt werden müssen, um den sicheren Betrieb dieses Geräts zu gewährleisten.

===	Gleichstrom (DC)	\bigcirc	Aus (Netzteil)
~	Wechselstrom (AC)		Ein (Netzteil)
\sim	Sowohl Gleich- als auch Wechselstrom		Vorsicht, Stromschlagrisiko
3~	Drei-Phasen-Wechselstrom	\triangle	Vorsicht, Stromschlagrisiko (spezifische Warn- und Vorsichtshinweise finden Sie im Handbuch).
士	Anschluss an Schutzerde (Masse)		Vorsicht, heiße Oberfläche
	Schutzleiteranschluss		Aus-Stellung eines bistabilen Druckknopfes
<i>/</i>	Rahmen- oder Gehäuseanschluss		Ein-Stellung eines bistabilen Druckknopfes
\triangle	Equipotenzialität	CAT III 1000 V	Kategorie III 1000 V Überspannungsschutz
	Ausrüstung ständig durch Doppelisolierung oder verstärkte Isolierung geschützt.	CAT IV 600 V	Kategorie IV 600 V Überspannungsschutz

Sicherheitsinformationen

Dieses Messgerät ist sicherheitszertifiziert nach EN/IEC 61010-1:2001, ANSI/UL 61010-1:2004 und CAN/CSA 22.2 61010-1-04, Kategorie III 1000 V/ Kategorie IV 600 V Überspannungsschutz, Verschmutzungsgrad II. Es wird verwendet mit standardmäßigen oder kompatiblen Testsonden.

Allgemeine Sicherheitsinformationen

Die folgenden allgemeinen Sicherheitsvorkehrungen müssen während aller Phasen des Betriebs, des Services und der Reparatur dieses Instruments beachtet werden. Durch Missachtung dieser Sicherheitsvorkehrungen oder bestimmter Warnungen an einer anderen Stelle dieses Handbuchs werden die Sicherheitsstandards beim Entwurf, bei der Bereitstellung und bei der vorgesehenen Verwendung dieses Instruments verletzt. Agilent Technologies übernimmt bei Missachtung dieser Voraussetzungen durch den Kunden keine Haftung.

VORSICHT

- Trennen Sie den Schaltkreis von der Spannungsversorgung und entladen Sie alle Hochspannungskondensatoren im Schaltkreis, bevor Sie Widerstands-, Durchgangs-, Dioden- oder Kapazitätstests durchführen.
- Verwenden Sie die richtigen Anschlüsse, Funktionen und Bereiche für die Messungen.
- Messen Sie nie die Spannung, wenn die Strommessung ausgewählt ist.
- Verwenden Sie nur empfohlene Akkus. Stellen Sie das ordnungsgemäße Einlegen des Akkus in das Messgerät sicher, und achten Sie auf die richtige Polarität.
- Trennen Sie die Testleitungen während der Akkuladezeit von allen Anschlüssen.

WARNUNG

- Wenn Sie über 70V DC, 33 V AC RMS oder 46,7 V Spitzenwerte arbeiten, lassen Sie Vorsicht walten – hier besteht die Gefahr eines elektrischen Schlages.
- Messen Sie nicht mehr als die Nennspannung (wie auf dem Messgerät gekennzeichnet ist) zwischen den Anschlüssen, oder zwischen dem Anschluss und der Erdung.
- Überprüfen Sie den Betrieb des Messgeräts genau, indem Sie eine bekannte Spannung messen.
- Trennen Sie bei Strommessungen den Schaltkreis vor der Verbindung mit dem Messgeräts von der Stromversorgung. Schalten Sie das Messgerät immer parallel mit dem Schaltkreis.
- Wenn Sie die Sonden verbinden, verbinden Sie immer erst die allgemeine Messsonde.
 Wenn Sie die Sonden trennen, trennen Sie immer erst die stromführende Messsonde.
- Lösen Sie erst die Messsonden vom Messgerät, bevor Sie die Batteriefachabdeckung öffnen.
- Verwenden Sie das Messgerät nicht, wenn die Batteriefachabdeckung oder ein Teil davon fehlt oder nicht fest sitzt.
- Ersetzen Sie die Batterie sobald die Anzeige des Batteriestatus auf dem Bildschirm blinkt. Dadurch werden falsche Messungen vermieden, die möglicherweise zu einem Stromschlag oder zu einer Verletzung führen können.
- Arbeiten Sie mit dem Produkt nicht in einer explosiven Umgebung oder in der Nähe von entflammbaren Gasen oder Dämpfen.
- Untersuchen Sie den Koffer auf Risse oder fehlende Kunststoffteile. Richten Sie Ihre Aufmerksamkeit auf die Isolierung um die Stecker. Verwenden Sie das Messgerät nicht, wenn es beschädigt ist.
- Untersuchen Sie die Testsonden auf beschädigte Isolierung oder auf offenes Metall, und überprüfen Sie den Durchgang. Verwenden Sie die Messsonden nicht, wenn sie beschädigt sind.
- Verwenden Sie keine anderen AC-Ladeadapter außer denen, die von Agilent für das Produkt zertifiziert sind.
- Verwenden Sie keine reparierten Sicherungen oder Kurzschluss-Sicherungshalter. Für den kontinuierlichen Schutz gegen Feuer, ersetzen Sie die Sicherungen nur durch Sicherungen derselben Spannung und Stromstärke sowie des empfohlenen Typs.
- Führen Sie keine Servicemaßnahmen oder Anpassungen alleine durch. Unter bestimmten Umständen kann gefährliche Spannung vorhanden sein, auch wenn die Geräte ausgeschaltet sind. Um die Gefahren eines elektrischen Schlags weitestgehend zu vermeiden, dürfen Servicemitarbeiter interne Wartungs- oder Einstellungsarbeiten nur in Anwesenheit einer weiteren Person unternehmen, die eine Wiederbelebung oder Erste-Hilfe-Maßnahmen leisten kann.
- Ersetzen Sie keine Teile oder ändern Sie die Geräte, um die Gefahr von zusätzlichen Schocks zu vermeiden. Geben Sie das Produkt zur Wartung und zur Reparatur zurück an Agilent Technologies Sales und das Service Office, um sicherzustellen, dass die Sicherheitsmerkmale erhalten bleiben.
- Arbeiten Sie nicht mit beschädigten Geräten, da die Sicherheitsschutzmerkmale, die in das Produkt implementiert sind, möglicherweise beeinträchtigt werden, entweder durch physikalische Beschädigung, durch überhöhte Feuchtigkeit oder durch andere Gründe. Entfernen Sie den Strom und verwenden Sie das Produkt nicht, bis der Sicherheitsbetrieb durch geschulte Servicemitarbeiter überprüft werden kann. Geben Sie das Produkt ggf. zur Wartung und zur Reparatur zurück an Agilent Technologies Sales und das Service Office, um sicherzustellen, dass die Sicherheitsmerkmale erhalten bleiben.

Aufsichtsrechtliche Kennzeichnungen

CE ISM 1-A	Das CE-Zeichen ist eine registrierte Marke der Europäischen Gemeinschaft. Das CE-Zeichen gibt an, dass das Produkt allen relevanten europäischen rechtlichen Richtlinien entspricht.	C N10149	Das C-Tick-Zeichen ist eine registrierte Marke der Spectrum Management Agency of Australia. Dies kennzeichnet die Einhaltung der australischen EMC-Rahmenrichtlinien gemäß den Bestimmungen des Radio Communication Act von 1992.
ICES/NMB-001	ICES/NMB-001gibt an, dass dieses ISM-Gerät der kanadischen Norm ICES-001 entspricht. Cet appareil ISM est confomre a la norme NMB-001 du Canada.		Dieses Gerät entspricht der Kennzeichnungsanforderung gemäß WEEE-Richtlinie (2002/96/EC). Dieses angebrachte Produktetikett weist darauf hin, dass Sie dieses elektrische/elektronische Produkt nicht im Hausmüll entsorgen dürfen.
© ® US	Das CSA-Zeichen ist eine eingetragene Marke der Canadian Standards Association.		

Europäische Richtlinie über Elektro- und Elektronik-Altgeräte (Waste Electrical and Electronic Equipment, WEEE) 2002/96/EC

Dieses Gerät entspricht der Kennzeichnungsanforderung gemäß WEEE-Richtlinie (2002/96/EC). Dieses angebrachte Produktetikett weist darauf hin, dass Sie dieses elektrische/elektronische Produkt nicht im Hausmüll entsorgen dürfen.

Produktkategorie:

Im Bezug auf die Ausrüstungstypen in der WEEE-Richtlinie Zusatz 1, gilt dieses Instrument als "Überwachungs- und Kontrollinstrument".

Das angebrachte Produktetikett ist unten abgebildet.

Entsorgen Sie dieses Gerät nicht im Hausmüll

Zur Entsorgung dieses Instruments wenden Sie sich an die nächste Agilent Technologies Geschäftsstelle oder besuchen Sie: www.agilent.com/environment/product Dort erhalten Sie weitere Informationen.

In diesem Handbuch...

1 Erste Schritte

Dieses Kapitel enthält Informationen zu Bedienfeld, Drehregler, Tastenfeld, Anzeige, Anschlüssen und hinterem Bedienfeld der digitalen Handmultimeter U1251B und U1252B von Agilent.

2 Vornehmen von Messungen

In diesem Kapitel wird beschrieben, wie mit den digitalen Handmultimetern U1251B und U1252B von Agilent Messungen vorgenommen werden.

3 Funktionen und Merkmale

In diesem Kapitel werden Funktionen und Merkmale der digitalen Handmultimeter U1251B und U1252B von Agilent beschrieben.

4 Ändern der Standardeinstellung

In diesem Kapitel wird erklärt, wie die Standardwerkseinstellungen des U1251B und U1252B geändert sowie weitere verfügbare Einstellungen vorgenommen werden.

5 Wartung

In diesem Kapitel wird die Vorgehensweise zur Behebung von Problemen beim digitalen Handmultimeter beschrieben.

6 Leistungstests und Kalibrierung

In diesem Kapitel werden Leistungstest- und Einstellungsverfahren erläutert.

7 Spezifikationen

In diesem Kapitel sind die Produktmerkmale, die Spezifikationsbedingungen und die Spezifikationen der digitalen Multimeter U1251B und U1252B aufgeführt.

Konformitätserklärung (KE)

Die Konformitätserklärung (KE) für dieses Gerät ist auf der Website verfügbar. Unter Eingabe des Produktmodells oder der Beschreibung können Sie nach der KE suchen.

http://regulations.corporate.agilent.com/DoC/search.htm

Falls Sie die entsprechende KE nicht finden können, wenden Sie sich bitte an den lokalen Agilent-Vertreter.

Inhalt

1 Erste Schritte

Einführung zu den digitalen Handmultimetern U1251B und U1252B	2
Überprüfen der Lieferung 3	
Einstellen des Neigungsständers 4	
Das vordere Bedienfeld auf einen Blick 6	
Das hintere Bedienfeld auf einen Blick 7	
Der Drehregler auf einen Blick 8	
Das Tastenfeld auf einen Blick 9	
Die Anzeige auf einen Blick 11	
Auswählen der Anzeige mit der Hz-Taste 15	
Auswählen der Anzeige mit der Dual-Taste 17	
Auswählen der Anzeige mit der Shift-Taste 21	
Die Anschlüsse auf einen Blick 22	
Vornehmen von Messungen	
Grundlegendes zu den Messanweisungen 24	
Messen der Spannung 24	
Messen der AC-Spannung 25	
Messen der DC-Spannung 26	
Messen der Stromstärke 27	
μA & mA (Messung) 27	
Prozentuale Skalierung von 4 mA bis 20 mA 29	
A-Messung (Ampere) 31	
Frequenzzähler Zähler 32	
Messwiderstand, Leitfähigkeit und Testdurchgang 34	
Testen von Dioden 38	
Messen der Kapazität 41	

2

	Messen der Temperatur 43
	Warnmeldungen und Warnungen während der Messung Überspannungswarnung 47 Eingangswarnung 47 Ladeanschlusswarnung 48
3	Funktionen und Merkmale
	Dynamische Aufzeichnung 50
	Halten von Daten (Halten mit Auslöser) 52
	Halten aktualisieren 53
	Null (Relative) 55
	Dezibelanzeige 57 1-ms-Spitzenwert-Haltemodus 59
	Datenprotokollierung 61 Manuelle Protokollierung 61 Intervall-Protokollierung 63 Überprüfen der protokollierten Daten 65
	Protokollansichtsmodus Rechteckwellenausgabe (für U1252B) 67
	Remotekommunikation 71
4	Ändern der Standardeinstellung
	Auswahl des Einrichtungsmodus 74
	Einstellung von Datenhaltemodus/Modus "Halten aktualisieren" 78
	Einstellung des Datenprotokollierungsmodus 79
	Einstellung der Thermoelementtypen (nur für U1252B) 80
	Einstellung der Referenzimpedanz für dBm-Messung 81
	Einstellung der Mindestfrequenzmessung 82

Einstellung der Temperatureinheit 83	
Einstellung des automatischen Energiesparmodus 85	
Einstellung der %-Skalenausgabe 87 Einstellung der Signaltonfrequenz 88 Einstellung des Hintergrundbeleuchtungs-Timers 89	
Einstellung der Baudrate 90	
Einstellung der Paritätsprüfung 91	
Einstellung des Datenbits 92	
Einstellung des Echomodus 93	
Einstellung des Druckmodus 94	
Rücksetzen auf die Standardwerkseinstellungen 95	
Einstellen der Batteriespannung 96	
Einstellen des DC-Filters 97	
Wartung	
Einführung 100 Allgemeine Wartung 100 Akku-/Batterieaustausch 100 Hinweise zur Lagerung 102 Laden des Akkus 103 Überprüfen der Sicherungen 110 Austausch von Sicherungen 112	
Einführung 100 Allgemeine Wartung 100 Akku-/Batterieaustausch 100 Hinweise zur Lagerung 102 Laden des Akkus 103 Überprüfen der Sicherungen 110	
Einführung 100 Allgemeine Wartung 100 Akku-/Batterieaustausch 100 Hinweise zur Lagerung 102 Laden des Akkus 103 Überprüfen der Sicherungen 110 Austausch von Sicherungen 112 Fehlerbehebung 114	
Einführung 100 Allgemeine Wartung 100 Akku-/Batterieaustausch 100 Hinweise zur Lagerung 102 Laden des Akkus 103 Überprüfen der Sicherungen 110 Austausch von Sicherungen 112 Fehlerbehebung 114 Ersatzteile 115	

6

5

Agilent Technologies Kalibrierungsservice 118 Kalibrierungsintervall 119 Einstellung wird empfohlen 119
Empfohlene Testausrüstung 120
Basisbetriebstest 121 Hintergrundbeleuchtungstest 121 Testen der Anzeige 121 Stromanschlusstest 122 Test der Ladeanschlusswarnung 123
Überlegungen zum Test 124
Kalibrierungssicherheit 125
Leistungsüberprüfungstests 126 Entsichern des Instruments zur Kalibrierung 134
Kalibrierungsprozess 137 Verwendung des vorderen Bedienfelds für Einstellungen 138
Überlegungen zu Einstellungen 139 Gültige Einstellungseingabewerte 140 Einstellungsverfahren 141 Beenden der Einstellung 148 So lesen Sie die Kalibrierungszahl 148 Kalibrierungsfehler 149
Spezifikationen
Produkteigenschaften 152
Messkategorie 155 Messkategoriedefinition 155
Spezifikationsbedingungen 156
Elektrische Spezifikationen 156 DC Specifications 156

7

AC-Spezifikationen 159	
AC+DC-Spezifikationen für U1252B 161	
Kapazitätsspezifikationen 162	
Temperaturspezifikationen 162	
Frequenzspezifikationen 163	
Arbeitszyklus- und Impulsbreitenspezifikatione	en 163
Spezifikationen für Frequenzempfindlichkeit	164
Spezifikationen für Spitzenwerthalten 166	
Spezifikationen für Frequenzzähler (U1252B)	166
Rechteckwellenausgabe für U1252B 167	
Betriebsspezifikationen 169	
Anzeigen der Aktualisierungsrate (ungefähr)	169
Eingangsimpedanz 170	

Liste der Abbildungen

Abbildung 1-1	Ständer für eine Neigung von 60° 4
Abbildung 1-2	Ständer für eine Neigung von 30° 4
Abbildung 1-3	Ständer für die Aufhängung 5
Abbildung 1-4	Vorderes Bedienfeld des U1252B 6
Abbildung 1-5	Hinteres Bedienfeld 7
Abbildung 1-6	Drehregler 8
Abbildung 1-7	Tastenfeld des U1252B 9
Abbildung 1-8	Anzeigesymbole 11
Abbildung 1-9	Anschlüsse 22
Abbildung 2-1	Messen der AC-Spannung 25
Abbildung 2-2	Messen der DC-Spannung 26
Abbildung 2-3	Messen der mA- und mA-Stromstärke 28
Abbildung 2-4	Messen der Skalierung von 4-20 mA 30
Abbildung 2-5	A-Stomstärkenmessung (Ampere) 31
Abbildung 2-6	Messungsfrequenz 33
Abbildung 2-7	Messungswiderstand 34
Abbildung 2-8	Akustischer Durchgangstest, Leitfähigkeit und
J	Widerstandstest. 35
Abbildung 2-9	Leitfähigkeitsmessung 37
Abbildung 2-10	Messen der Vorwärtsspannung einer Diode 39
Abbildung 2-11	Messen der Sperrvorspannung einer Diode 40
Abbildung 2-12	Kapazitätsmessungen 42
Abbildung 2-13	Anschließen der Wärmesonde am Übertragungsa-
	dapter ohne Ausgleich 44
Abbildung 2-14	Anschließen der Sonde mit Adapter am
_	Multimeter 44
Abbildung 2-15	Oberflächentemperaturmessung 46
Abbildung 2-16	Eingangsanschlusswarnung 47
Abbildung 2-17	Ladeanschlusswarnung 48
Abbildung 3-1	Dynamische Aufzeichnung 51
Abbildung 3-2	Datenhalten 52
Abbildung 3-3	Modus "Halten aktualisieren" 54
Abbildung 3-4	Null (relative) 56
Abbildung 3-5	dBm/dBV-Anzeigemodus 58
Abbildung 3-6	1-ms-Spitzenwert-Haltemodus 60
Abbildung 3-7	Manuelle Protokollierung) 62
Abbildung 3-8	Volles Protokoll 62
Abbildung 3-9	Intervall-Protokollierungsmodus (automatisch) 64
Abbildung 3-10	ProtokollansichtsmodusRechteckwellenausgabe
	(für U1252B) 66

Abbildung 3-11	Frequenzanpassung für Rechteckwellenausgabe	68
Abbildung 3-12	Arbeitszyklusanpassung für	
	Rechteckwellenausgabe 69	
Abbildung 3-13	Impulsbreitenanpassung für	
	Rechteckwellenausgabe 70	
Abbildung 3-14	Kabelverbindung für die Remotekommunikation	71
Abbildung 4-1	Einrichtung von Daten halten/Halten aktualisieren	78
Abbildung 4-2	Einrichtung der Datenprotokollierung 79	
Abbildung 4-3	Einrichtung des Thermoelementtyps 80	
Abbildung 4-4	Einrichtung der Referenzimpedanz für	
	dBm-Messung 81	
Abbildung 4-5	Einrichtung der Mindestfrequenz 82	
Abbildung 4-6	Einrichten der Temperatureinheit 84	
Abbildung 4-7	Einrichtung des automatischen	
	Energiesparmodus 86	
Abbildung 4-8	Einrichtung der %-Skalenausgabe 87	
Abbildung 4-9	Einrichtung der Signaltonfrequenz 88	
Abbildung 4-10	Einrichtung des	
	Hintergrundbeleuchtungs-Timers 89	
Abbildung 4-11	Einrichtung der Baudrate für die Fernsteuerung	90
Abbildung 4-12	Einrichtung der Paritätsprüfung 91	
Abbildung 4-13	Einrichtung des Datenbits für die Fernsteuerung	92
Abbildung 4-14	Einrichtung des Echomodus für die Fernsteuerung	93
Abbildung 4-15	Einrichtung des Druckmodus für die	
	Fernsteuerung 94	
Abbildung 4-16	Einrichtung des Rücksetzens 95	
Abbildung 4-17	Batteriespannungswahl 96	
Abbildung 4-18	DC-Filter 97	
Abbildung 5-1	Rechteckige Batterie mit 9 V 102	
Abbildung 5-2	Akkukapazitätsanzeige beim Auffrischen 105	
Abbildung 5-3	Selbsttest 106	
Abbildung 5-4	Lademodus 108	
Abbildung 5-5	Ladungsende und Auffrischstatus 108	
Abbildung 5-6	Laden des Akkus 109	
Abbildung 5-7	Überprüfen der Sicherungen 110	
Abbildung 5-8	Sicherungsaustausch 113	
Abbildung 6-1	LCD-Anzeige 121	
Abbildung 6-2	Eingangswarnung 122	
Abbildung 6-3	Ladeanschluss-Alarm 123	

Liste der Tabellen

Tabelle 1-1	Drehregler – Beschreibung und Funktionen 8
Tabelle 1-2	Tastenfeld Beschreibung/Funktionen 9
Tabelle 1-3	Allgemeine Anzeigesymbole 12
Tabelle 1-4	Symbole der Primäranzeige 13
Tabelle 1-5	Symbole der Sekundäranzeige 14
Tabelle 1-6	Bereich und Zahlen des analogen
	Balkendiagramms 15
Tabelle 1-7	Auswählen der Anzeige mit der Hz-Taste 16
Tabelle 1-8	Auswählen der Anzeige mit der Dual-Taste 18
Tabelle 1-9	Auswählen der Anzeige mit der Shift-Taste 21
Tabelle 1-10	Anschlüsse für verschiedene Messfunktionen 22
Tabelle 2-1	Beschreibungen der nummerierten Schritte 24
Tabelle 2-2	Prozentuale Skalierung und Messbereich 29
Tabelle 2-3	Messbereiche für akustische Durchgangstests 36
Tabelle 4-1	Verfügbare Einstellungsoptionen im
	Einrichtungsmodus 75
Tabelle 5-1	Akkuspannung und entsprechende Prozentangabe des
	Ladevorgangs im Standby- und Auflademodus. 104
Tabelle 5-2	Fehlermeldungen 106
Tabelle 5-3	Messwerte für die Überprüfung der Sicherung 111
Tabelle 5-4	Spezifikationen der Sicherungen 113
Tabelle 5-5	Verfahren zur grundlegenden Problembehebung 114
Tabelle 6-1	Empfohlene Testausrüstung 120
Tabelle 6-2	Überprüfungstest 127
Tabelle 6-3	Gültige Einstellungseingabewerte 140
Tabelle 6-4	Einstellungstabelle 143
Tabelle 6-5	Kalibrierungsfehlercodes und ihre jeweilige
	Bedeutung 149
Tabelle 7-1	DC-Genauigkeit ± (% des Messwerts + Nr. der nieder-
	wertigsten Ziffer) 156
Tabelle 7-2	U1251B Genauigkeitsspezifikationen ± (% des Mess-
	werts + Nr. der niederwertigsten Ziffer) für True RMS
	AC-Spannung 159
Tabelle 7-3	U1251B Genauigkeitsspezifikationen ± (% des Mess-
	werts + Nr. der niederwertigsten Ziffer) für True RMS
	AC-Stromstärke 159

Tabelle 7-4	U1252B Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS
	AC-Spannung 160
Tabelle 7-5	U1252B Genauigkeitsspezifikationen ± (% des Mess-
idbelle 7 0	werts + Nr. der niederwertigsten Ziffer) für True RMS
	AC-Spannung 160
Tabelle 7-6	U1252B True RMS
1450110 7 0	AC+DC-Spannungsspezifikationen 161
Tabelle 7-7	U1252B True RMS
1450110 7 7	AC+DC-Stromstärkespezifikationen 161
Tabelle 7-8	Kapazitätsspezifikationen 162
Tabelle 7-9	Temperaturspezifikationen 162
Tabelle 7-10	Frequenzspezifikationen 163
Tabelle 7-11	Arbeitszyklus- und
	Impulsbreitenspezifikationen 163
Tabelle 7-12	Frequenzempfindlichkeits- und Triggerpegelspezifika-
	tionen für Spannungsmessungen 164
Tabelle 7-13	Frequenzempfindlichkeitsspezifikationen für
	Stromstärkemessungen 165
Tabelle 7-14	Spitzenwerthalten-Spezifikationen für DC-Spannung-
	und Stromstärkemessungen 166
Tabelle 7-15	Frequenzzählerspezifikationen (Dividieren durch 1) 166
Tabelle 7-16	Frequenzzählerspezifikationen (Dividieren durch 100 ^[4]) 167
Tabelle 7-17	Spezifikationen für Rechteckwellenausgabe 167
Tabelle 7-18	Anzeigen der Aktualisierungsrate (ungefähr) 169
Tabelle 7-19	Eingangsimpedanz 170

Dieses Kapitel enthält Informationen zu Bedienfeld, Drehregler, Tastenfeld, Anzeige, Anschlüssen und hinterem Bedienfeld der digitalen Handmultimeter U1251B und U1252B von Agilent.

Auswählen der Anzeige mit der Dual-Taste 17 Auswählen der Anzeige mit der Shift-Taste 20

Die Anschlüsse auf einen Blick 22

Einführung zu den digitalen Handmultimetern U1251B und U1252B

Hauptmerkmale dieses digitalen Multimeters:

- Spannungs- und Stromstärkemessungen in DC, AC und AC + DC (nur U1252B) .
- True-RMS-Messung für AC-Spannung und -Stromstärke
- Akku mit integrierter Ladefunktion (nur U1252B)
- Umgebungstemperatur auf zweiter Anzeige
- Akkukapazitätsanzeige
- Hellorangefarbene LED-Hintergrundbeleuchtung
- Widerstandsmessung bis zu 50 M Ω (für U1251B) und 500 M Ω (für U1252B)
- Leitfähigkeitsmessung von 0,01 nS (100 G Ω) ~ 50 nS
- Kapazitätsmessung bis zu 100 mF
- Frequenzzähler bis zu 20 MHz (nur U1252B)
- %-Skalenausgabe für 4-20 mA- oder 0-20 mA-Messung
- dBm mit wählbarer Referenzimpedanz
- 1-ms-Spitzenwert-Haltemodus zum mühelosen Erfassen von Einschaltspannung und –strom
- Temperaturtest mit wählbarem 0 °C-Ausgleich (ohne Ausgleich der Umgebungstemperatur)
- K-Typ- (für U1251B) und J/K-Typ-Temperaturmessung (für U1252B)
- Frequenz-, Arbeitszyklus- und Impulsbreitemessungen
- Dynamische Aufzeichnung für Minimal-, Maximal- und Durchschnittsmesswerte.
- Datenhalten mit manuellem oder automatischem Auslöser und Nullmodus
- Dioden- und akustische Durchgangstests
- Rechteckwellengenerator Frequenz, Impulsbreite und Arbeitszyklus wählbar (nur U1252B)
- Agilent GUI-Anwendungssoftware (IR-USB-Kabel separat erhältlich)
- Kalibrierung bei geschlossenem Gehäuse

Überprüfen der Lieferung

Überprüfen Sie, ob Sie das folgende Zubehör mit Ihrem Multimeter erhalten haben:

- Alkalibatterie mit 9 V (nur für U1251B)
- 4-mm-Sonden
- Testleitungen
- Abgreifklemmen
- Wiederaufladbarer Akku mit 7,2 V (nur für U1252B)
- Stromkabel und Wechselstromadapter (nur für U1252B)
- Kurzanleitung
- · Zertifikat für die Kalibrierung

Wenden Sie sich an ein Agilent Vertriebsbüro in Ihrer Nähe, falls Komponenten in der Lieferung fehlen sollten.

Überprüfen Sie die Transportverpackung auf Schäden. Zeichen einer Beschädigung können eine verbeulte oder zerrissene Transportverpackung oder eine unnormale Verdichtung oder Risse im Polstermaterial sein. Bewahren Sie das Verpackungsmaterial für den Fall auf, dass das Multimeter zurückgesandt werden muss.

Eine vollständige, aktuelle Liste des erhältlichen Zubehörs für das Handmultimeter finden Sie in der Broschüre Agilent Handheld Tools (5989-7340EN).

Einstellen des Neigungsständers

Um das Messgerät in einer Position von 60° aufzustellen, ziehen Sie den Neigungsständer maximal aus.

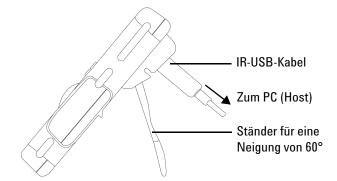


Abbildung 1-1 Ständer für eine Neigung von 60°

Um das Messgerät in einer Position von 30° aufzustellen, biegen Sie die Spitze des Ständers so, dass sie parallel zum Boden ist, bevor Sie den Ständer maximal ausziehen.

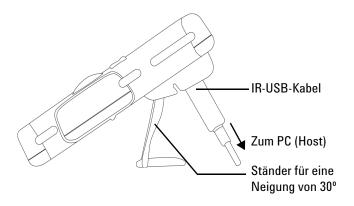


Abbildung 1-2 Ständer für eine Neigung von 30°

Um das Multimeter aufzuhängen, führen Sie die unten in Abbildung 1-3 gezeigten Schritte aus.

Abbildung 1-3 Ständer für die Aufhängung

Das vordere Bedienfeld auf einen Blick

Abbildung 1-4 Vorderes Bedienfeld des U1252B

Das hintere Bedienfeld auf einen Blick

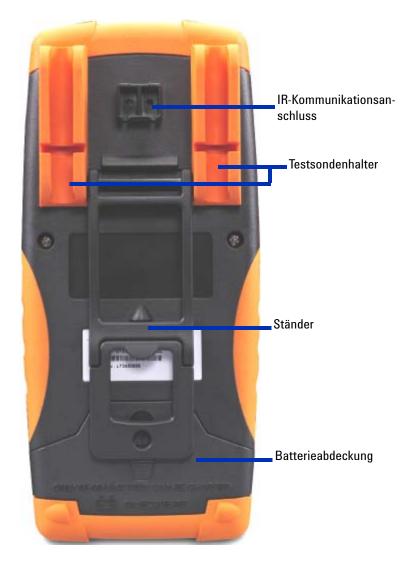


Abbildung 1-5 Hinteres Bedienfeld

Der Drehregler auf einen Blick

Abbildung 1-6 Drehregler

Tabelle 1-1 Drehregler – Beschreibung und Funktionen

Nr.	Beschreibung/Funktion
1	Lademodus [nur U1252B] oder AUS
2	AC V
3	DC-Spannung oder DC+AC-Spannung [nur U1252B]
4	DC mV, AC mV, AC+DC mV [nur U1252B]
5	Widerstand (Ω), Durchgang und Leitfähigkeit (nS)
6	Frequenzzähler [nur U1252B] oder Diode
7	Kapazität oder Temperatur
8	DC μΑ, ΑC μΑ, ΑC+DC μΑ
9	DC mA, DC-Stromstärke, AC mA, AC-Stromstärke oder AC+DC-Stromstärke
10	Rechteckwellenausgabe, Arbeitszyklus oder Impulsbreitenausgabe [für U1252B] und AUS [für U1251B]

Das Tastenfeld auf einen Blick

Die Funktion jeder Taste ist nachstehend dargestellt. Bei Drükken einer Taste leuchtet ein entsprechendes Symbol auf, und ein Signalton wird ausgegeben. Bei Drehen des Drehreglers in eine andere Position wird die aktuelle Funktion der Taste zurückgesetzt.

Abbildung 1-7 zeigt das Tastenfeld von U1252B. Die Funktionen **ms**% (Impulsbreite/Arbeitszyklus), **Hz** und Frequenzzähler sind nur bei U1252B verfügbar.

Abbildung 1-7 Tastenfeld des U1252B

Tabelle 1-2 Tastenfeld Beschreibung/Funktionen

Taste		Funktion bei Tastendruck von weniger als 1 Sekunde	Funktion bei Tastendruck von mehr als 1 Sekunde	
1		schaltet die Hintergrundbeleuchtung EIN/AUS. Hintergrundbeleuchtung wird nach 30 Sekunden automatisch ausgeschaltet (Standard) [1].	zeigt für 3 Sekunden die Batteriekapazität an.	
2	Hold	friert den gemessenen Wert ein. Drücken Sie im Datenhaltemodus erneut darauf, um den nächsten gemessenen Wert einzufrieren. Im Modus "Halten aktualisieren" wird der Messwert automatisch aktualisiert, sobald er stabil ist und die Zähleinstellung überschritten wird [1].	dus. Drücken Sie Hold erneut, um zwischen den Messwerten Max, Min, Avg (Durchschnitt) und dem aktuellen Messwert zu wechseln (auf der Anzeige durch MAXMINAVG gekennzeichnet).	
3	ΔΝυΙΙ	ANUI speichert den angezeigten Wert als Referenzwert, der von den nachfolgenden Messungen abgezogen wird. Drücken Sie erneut, um den relativen Wert anzuzeigen, der gespeichert wurde.	aktiviert den 1-ms-Spitzenwert-Haltemodus. Drücken Sie Hold um zwischen den Max- und Min-Spitzenwerten zu wechseln.	

1 Zum Kennenlernen

Tabelle 1-2 Tastenfeld Beschreibung/Funktionen (Fortsetzung)

4	Shiff	wechselt zwischen den Messfunktionen bei einer bestimmten Drehreglerposition.	aktiviert den Protokollanzeigemodus. Drücken Sie um zwischen manuellen oder Intervall-Protokoll- daten zu wechseln. Drücken Sie doer d
5	Range	wenn der Drehregler sich in der Position TEMP oder Hz [für U1252B] befindet) [2].	Range stellt den Modus zur automatischen Bereichsauswahl ein.
6	Dual	(außer wenn der Drehregler sich in der Position der Gründlich oder [für U1252B] befindet oder wenn das Messgerät sich im 1-ms-Spitzenwert-Haltemodus oder im dynamischen Aufzeichnungsmodus befindet) [3].	Dual beendet die Modi Halten, Null und dynamische Aufzeichnung sowie den 1-ms-Spitzenwert-Haltemo- dus und die Kombinationsanzeige.
7	Hz	aktiviert den Frequenztestmodus für Stromstärkenoder Spannungsmessungen. Drücken Sie Hz, um zwischen den Funktionen Frequenz (Hz), Arbeitszyklus (%) und Impulsbreite (ms) zu wechseln. Bei Arbeitszyklus- (%) und Impulsbreitetests (ms) drücken Sie Hz, um zwischen positivem und negativem Impuls umzuschalten.	Hz aktiviert den Protokollmodus. Bei der manuellen Datenprotokollierung drücken Sie Hz, um Daten manuell im Speicher zu protokollieren. Bei der automatischen Datenprotokollierung werden Daten automatisch protokolliert [1]. Halten Sie Hz länger als 1 Sekunde gedrückt, um den Modus der automatischen Datenprotokollierung zu beenden.

Hinweise zu den Beschreibungen und Funktionen des Tastenfelds:

- 1 Weitere Informationen zu den verfügbaren Optionen finden Sie in Tabelle 4-1 auf Seite 75.
- 2 Befindet sich der Drehregler in der Position], drücken Sie Range, um die Anzeige zwischen °C oder °F umzuschalten.

 Befindet sich der Drehregler auf der Position Hz, drücken Sie Range, um die Signalfrequenz durch 1 oder 100 zu teilen.
- 3 Befindet sich der Drehregler auf der Position ↓, ist ETC (Außentemperaturausgleich) standardmäßig aktiviert. Sie können drücken, um ETC (Ausgleich der Umgebungstemperatur) zu deaktivieren. ②€ wird angezeigt. Zur Impuls- und Arbeitszyklusmessung drücken Sie Dual, um die Triggerneigung auf positiv oder negativ umzuschalten. Wenn sich das Messgerät im Spitzenwert- oder dynamischen Aufzeichnungsmodus befindet, drücken Sie Dual, um den 1-ms-Spitzenwert-Haltemodus bzw. den dynamischen Aufzeichnungsmodus neu zu starten.

Die Anzeige auf einen Blick

Zur Darstellung der vollständigen Anzeige (alle Segmente leuchten auf) drücken Sie und halten Sie diese Taste Hold gedrückt, während Sie den Drehregler von OFF in eine beliebige andere Position drehen. Wenn Sie die vollständige Anzeige wieder deaktivieren möchten, drücken Sie eine beliebige Taste, um zur normalen Funktionalität zurückzukehren, die von der Drehreglerposition vorgegeben ist. Darauf folgt eine Aktivierungsfunktion.

Das Messgerät wechselt dann in den Energisparmodus, sobald die automatische Abschaltfunktion (APF) aktiviert ist. So aktivieren Sie das Messgerät:

- Drehen Sie den Drehregler auf OFF und anschließend wieder in die Einschaltposition.
- 2 Drücken Sie eine beliebige Taste, wobei sich der Drehregler nicht in der Rechteckwellenausgabeposition befinden darf. (nur für U1252B)
- 3 Um den Drehregler auf die Position für die Rechteckwellenausgabe einzustellen, drücken Sie nur die Tasten Dual, Range und Hold, oder drehen Sie den Drehregler in eine andere Position. (nur für U1252B)

Die LCD-Zeichen werden in den folgenden Tabellen erklärt.

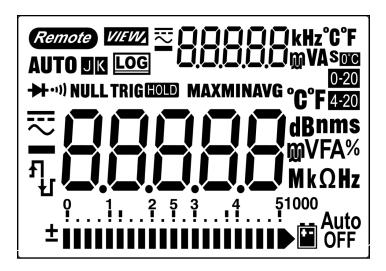


Abbildung 1-8 Anzeigesymbole

1 Zum Kennenlernen

Tabelle 1-3 Allgemeine Anzeigesymbole

LCD-Symbol	Beschreibung
Remote	Fernsteuerung
KJ	Thermoelementtypen: K (K-Typ) J (J-Typ)
NULL	Math. Null-Funktion
→ ·1)	Diode/Akustischer Durchgangstest
•1))	Akustischer Durchgangstest für Widerstand
VIEW	Anzeigemodus zur Überprüfung protokollierter Daten
LOG	Datenprotokollierungsanzeige
₹ 1	Rechteckwellenausgabe (nur U1252B)
П	Positive Neigung für Messung von Impulsbreite (ms) und Arbeitszyklus (%)
Я	Kondensatoraufladung als Kapazitätsmessung
ŦL	Negative Neigung für Messung von Impulsbreite (ms) und Arbeitszyklus (%)
	Kondensatorentladung als Kapazitätsmessung
	Anzeige des Batteriestatus
Auto OFF	Automatische Abschaltfunktion aktivieren
HOLD	Halten aktualisieren (automatisch)
TRIG HOLD	Halten Auslöser (manuell)
MAXMINAVG	Dynamischer Aufzeichnungsmodus: Aktueller Wert auf Primäranzeige
MAX	Dynamischer Aufzeichnungsmodus: Maximaler Wert auf Primäranzeige
MIN	Dynamischer Aufzeichnungsmodus: Minimaler Wert auf Primäranzeige
AVG	Dynamischer Aufzeichnungsmodus: Durchschnittswert auf Primäranzeige
HOLD MAX	1-ms-Spitzenwert-Haltemodus: Positiver Spitzenwert auf Primäranzeige
HOLD MIN	1-ms-Spitzenwert-Haltemodus: Negativer Spitzenwert auf Primäranzeige

Die Zeichen der Primäranzeige sind nachstehend beschrieben.

Tabelle 1-4 Symbole der Primäranzeige

LCD-Symbol	Beschreibung
AUTO	Automatische Bereichsauswahl
≂	AC + DC
	DC
~	AC
-88888	Polarität, Ziffern und Dezimalpunkte für Primäranzeige
dBm	Dezibeleinheit relativ zu 1 mW
dBV	Dezibeleinheit relativ zu 1 V
MkHz	Frequenzeinheiten: Hz, kHz, MHz
ΜkΩ	Widerstandseinheiten: Ω , k Ω , M Ω
nS	Leitfähigkeitseinheit
mV	Spannungseinheiten: mV, V
μmA	Stromstärkeeinheiten: µA, mA, A
%	Arbeitszyklusmessung
ms	Impulsbreiteeinheit
μmnF	Kapazitätseinheiten: nF, μF, mF
°C	Celsius-Temperatureinheit
°F	Fahrenheit-Temperatureinheit
0-20 %	Prozentskalenausgabe proportional zu DC 0–20 mA
4-20 %	Prozentskalenausgabe proportional zu DC 4–20 mA

1 Zum Kennenlernen

Die Zeichen der Sekundäranzeige sind nachstehend beschrieben.

Tabelle 1-5 Symbole der Sekundäranzeige

LCD-Symbol	Beschreibung
≂	AC + DC
	DC
~	AC
-88888	Polarität, Ziffern und Dezimalpunkte für Sekundäranzeige
kHz	Frequenzeinheiten: Hz, kHz
0°C	Kein Ausgleich der Umgebungstemperatur, nur Thermoelementmessung
°C	Celsius-Umgebungstemperatureinheit
°F	Fahrenheit-Umgebungstemperatureinheit
mV	Spannungseinheiten: mV, V
μmA	Stromstärkeeinheiten: µA, mA, A
s	Einheit für verstrichene Zeit: s (Sekunde) für dynamische Aufzeichnung und 1-ms-Spitzenwert-Haltemodi

Das analoge Balkendiagramm emuliert die Nadel auf einem analogen Multimeter, ohne die Überschwingweite anzuzeigen. Beim Messen von Spitzen oder Nulleinstellungen und der Anzeige von sich schnell ändernden Eingaben ist die Säulendiagrammanzeige nützlich, da diese für schnell reagierende Anwendungen häufiger aktualisiert wird.

Die Säulendiagrammanzeige wird nicht verwendet zur Messung von Rechteckwellenausgabe, Frequenz, Impulsbreite, Arbeitszyklus, 4–20 mA%-Skala, 0–20 mA%-Skala und Temperatur. Wenn Frequenz, Arbeitszyklus und Impulsbreite während Spannungs- oder Stromstärkenmessung auf der Primäranzeige angezeigt werden, stellt die Säulendiagrammanzeige den Spannungsoder Stromstärkenwert dar. Wenn eine 4-20 mA %-Skala oder 0-20 mA %-Skala auf der Primäranzeige zu sehen ist, dann stellt das Balkendiagramm den Stromstärkewert dar und nicht den Prozentwert.

Das "+" oder "–"-Zeichen wird angezeigt, wenn der positive oder negative Wert gemessen oder berechnet wurde. Jedes Segment stellt abhängig von dem auf der Säulendiagrammanzeige für den Spitzenwert angezeigten Bereich 2500 oder 500 Zahlen dar. Siehe nachstehende Tabelle.

Tabelle 1-6 Bereich und Zahlen des analogen Balkendiagramms

Bereich	Zahlen/Segment	Verwendung für Funktion
912345 ±	2500	V, Ω, Diode
9123451 ±	2500	V, A, Ω
0 1 2 3 4 510 ±	2500	V, A, Ω, nS
0 1	500	V, →⊢
9	500	+
9	500	1 ⊢

Auswählen der Anzeige mit der Hz-Taste

Die Frequenzmessung unterstützt das Erkennen harmonischer Ströme in neutralen Leitern und bestimmt, ob diese neutralen Ströme das Resultat unsymmetrischer Phasen oder

nicht-linearer Lasten sind. Durch Drücken von Hz wird der Frequenzmessungsmodus für Stromstärke- oder Spannungsmessungen eingegeben – Spannung oder Stromstärke auf der Sekundäranzeige und Frequenz auf der Primäranzeige.

1 Zum Kennenlernen

Alternativ können Impulsbreite (ms) oder Arbeitszyklus (%) durch erneutes Drücken von Hz auf der Primäranzeige angezeigt werden. Dies ermöglicht die simultane Überwachung von Spannung oder Stromstärke in Echtzeit mit Frequenz, Arbeitszyklus oder Impulsbreite. Die Anzeige von Spannung oder Stromstärke auf der Primäranzeige wird wieder aufgenommen, wenn Sie Dual länger als 1 Sekunde drücken und halten.

Tabelle 1-7 Auswählen der Anzeige mit der Hz-Taste

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige
~ v	Frequenz (Hz)	
∼v für U1252B	Impulsbreite (ms)	AC V
(AC-Spannung	Arbeitszyklus (%)	
Für U1251B	Frequenz (Hz)	
∼v für U1252B	Impulsbreite (ms)	DC V
(DC-Spannung	Arbeitszyklus (%)	
≂v _{für U1252B}	Frequenz (Hz)	
(AC + DC-Spannung)	Impulsbreite (ms)	AC + DC V
	Arbeitszyklus (%)	
~ mV	Frequenz (Hz)	
(AC-Spannung)	Impulsbreite (ms)	AC mV
	Arbeitszyklus (%)	
~ mV	Frequenz (Hz)	
(DC-Spannung)	Impulsbreite (ms)	DC mV
	Arbeitszyklus (%)	
~ mV	Frequenz (Hz)	AC + DC mV
(AC + DC-Spannung)	Impulsbreite (ms)	
	Arbeitszyklus (%)	
μ Α ~	Frequenz (Hz)	AC μA
(AC-Stromstärke)	Impulsbreite (ms)	
	Arbeitszyklus (%)	

Tabelle 1-7 Auswählen der Anzeige mit der Hz-Taste (Fortsetzung)

μA≂	Frequenz (Hz)	
(DC-Stromstärke)	Impulsbreite (ms)	DC μA
	Arbeitszyklus (%)	
μ Α ~	Frequenz (Hz)	
(AC + DC-Stromstärke)	Impulsbreite (ms)	AC + DC μA
[für U1252B]	Arbeitszyklus (%)	
mA·A ~	Frequenz (Hz)	
(AC-Stromstärke)	Impulsbreite (ms)	AC mA or A
[für U1252B]	Arbeitszyklus (%)	
mA·A ~~ (DC-Stromstärke)	Frequenz (Hz)	
	Impulsbreite (ms)	DC mA oder A
	Arbeitszyklus (%)	
mA·A ~	Frequenz (Hz)	
(AC + DC-Stromstärke) [für U1252B]	Impulsbreite (ms)	AC + DC mA
	Arbeitszyklus (%)	
Hz (Frequenzzähler) – drücken Sie Range um die Frequenz auszuwählen Division durch 1 [für U1252B]	Frequenz (Hz)	
	Impulsbreite (ms)	-1-
	Arbeitszyklus (%)	
Hz (Frequenzzähler) – drücken Sie Range) um die Frequenz auszuwählen Division durch 100 [für U1252B]	Frequenz (Hz)	- 100 -

Auswählen der Anzeige mit der Dual-Taste

Drücken Sie Dual, um verschiedene Kombinationen der Kombinationsanzeige auszuwählen. Die normale Einzelanzeige wird wieder aufgenommen, wenn Sie Dual länger als 1 Sekunde drücken und halten. Siehe nachstehende Tabelle 1-8.

1 Zum Kennenlernen

Tabelle 1-8 Auswählen der Anzeige mit der Dual-Taste

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige
~v	AC V	Hz (AC-Kopplung)
(AC-Spannung)	dBm oder dBV (Auswahl	AC V
	durch Drücken von 💗)	
	AC V	Umgebungstemperatur°C oder °F
≂v	AC V	Hz (AC-Kopplung)
	dBm oder dBV ^[1]	AC V
für U1252B	AC V	DC V
(AC-Spannung)	AC V	Umgebungstemperatur°C oder °F
 ∨ für U1251B/	DC V	Hz (DC-Kopplung)
für 111252D	dBm oder dBV [1]	DC V
(DC voltage)	DC V	AC V [für U1252B]
(3 3 3 7	DC V	Umgebungstemperatur°C oder °F
	AC + DC V	Hz (AC-Kopplung)
\sim v	dBm oder dBV [1]	AC + DC V
(AC + DC-Spannung)	AC + DC V	AC V
3,	AC + DC V	DC V
	AC + DC V	Umgebungstemperatur°C oder °F
∼ mV	AC mV	Hz (AC-Kopplung)
(AC-Spannung)	dBm oder dBV ^[1]	AC mV
	AC mV	DC mV
	AC mV	Umgebungstemperatur°C oder °F
∼ mV	DC mV	Hz (DC-Kopplung)
(DC-Spannung)	dBm oder dBV [1]	DC mV
, , , , , , , , , , , , , , , , , , , ,	DC mV	AC mV
	DC mV	Umgebungstemperatur°C oder °F

Hinweise zur Auswahl der Anzeige mit der Dual-Taste:

¹ Messwert von dBm oder dBV hängt von der letzten Prüfung von AC V ab. Ist die letzte Prüfung dBV, verbleibt die folgende Anzeige auch in dBV.

 Tabelle 1-8
 Auswählen der Anzeige mit der Dual-Taste (Fortsetzung)

	1	
≂ mV	AC + DC mV	Hz (AC-Kopplung)
(AC + DC-Spannung)	dBm oder dBV	AC + DC mV
[für U1252B]	AC + DC mV	AC mV
[]	AC + DC mV	DC mV
	AC + DC mV	Umgebungstemperatur°C oder °F
μA≂	DC µA	Hz (DC-Kopplung)
(DC-Stromstärke)	DC μA	ΑС μΑ
	DC µA	Ambient temperature °C or °F
μ Α ~	ΑС μΑ	Hz (AC-Kopplung)
(AC-Stromstärke)	ΑС μΑ	DC μA
	ΑС μΑ	Umgebungstemperatur°C oder °F
μA	AC + DC μA	Hz (AC-Kopplung)
(AC + DC-Stromstärke)	AC + DC μA	ΑС μΑ
[für U1252B]	AC + DC μA	DC μA
	AC + DC μA	Umgebungstemperatur°C oder °F
mA·A 	DC mA	Hz (DC-Kopplung)
(DC-Stromstärke)	DC mA	AC mA
	%(0-20 oder 4-20)	DC mA
	DC mA	Umgebungstemperatur°C oder °F
mA·A 	AC mA	Hz (AC-Kopplung)
(AC-Stromstärke)	AC mA	DC mA
	AC mA	Umgebungstemperatur°C oder °F
mA·A 	AC + DC mA	Hz (AC-Kopplung)
(AC + DC-Stromstärke)	AC + DC mA	AC mA
[für U1252B]	AC + DC mA	DC mA
	AC + DC mA	Umgebungstemperatur°C oder °F
mA·A 	DC A	Hz (DC-Kopplung)
(DC-Stromstärke)	DC A	AC A
	DC A	Umgebungstemperatur°C oder °F

1 Zum Kennenlernen

Tabelle 1-8 Auswählen der Anzeige mit der Dual-Taste (Fortsetzung)

mA·A 	AC A	Hz (AC-Kopplung)
(AC-Stromstärke)	AC A	DC A
	AC A	Umgebungstemperatur°C oder °F
mA·A 	AC + DC A	Hz (AC-Kopplung)
(AC + DC-Stromstärke)	AC + DC A	AC A
	AC + DC A	DC A
	AC + DC A	Umgebungstemperatur°C oder °F
H (Kapazität) → (Diode)/ Ω (Widerstand)/ nS (Leitfähigkeit)	nF/V/Ω/nS	Umgebungstemperatur°C oder °F
(Temperatur)	°C (°F)	Umgebungstemperatur°C oder °F
• (remperatury	°C (°F)	Umgebungstemperatur °C oder °F / 0°C Ausgleich (Auswahl durch
		Drücken von Dual)

Auswählen der Anzeige mit der Shift-Taste

Die nachstehende Tabelle zeigt die Auswahl der Primäranzeige mit Berücksichtigung der Messfunktion (Drehreglerposition) mittels der Shift-Taste.

Tabelle 1-9 Auswählen der Anzeige mit der Shift-Taste

Drehreglerposition (Funktion)	Primäranzeige Primäranzeige
~ v	AC V
(AC-Spannung)	dBm (im Kombinationsanzeigemodus) [1][2]
	dBV (im Kombinationsanzeigemodus) [1][2]
TTT V für U1251B	DC V
≂V für U1252B	DC V
	AC V
(AC + DC-Spannung)	AC + DC V

Tabelle 1-9 Auswählen der Anzeige mit der Shift-Taste (Fortsetzung)

DC mV
AC mV
AC + DC mV
Ω
•1) Ω
nS
Diode
Hz
Kapazität
Temperatur
DC μA
ΑC μΑ
AC + DC μA [für U1252B]
DC mA
AC mA
AC + DC mA
%(0–20 oder 4–20)
DC A
AC A
AC + DC A [für U1252B]
Arbeitszyklus (%)
Impulsbreite (ms)

Hinweise zur Auswahl der Anzeige mit der Shift-Taste:

- 1 Drücken Sie zum Wechsel zwischen dBm- und dBV-Messung.
- 2 Halten Sie Dual länger als 1 Sekunde gedrückt, um zur AC V-Messung zurück zu wechseln.

Die Anschlüsse auf einen Blick

WARNUNG

Um eine Beschädigung des Multimeters zu vermeiden, überschreiten Sie nicht die Eingangsbeschränkung.

Abbildung 1-9 Anschlüsse

Tabelle 1-10 Anschlüsse für verschiedene Messfunktionen

Drehreglerposition	Eingangsanschluss		Überspannungsschutz
~ v	1	СОМ	1000 V R.M.S.
▼ V für U1252B für U1251B	♣ → → → ⊢ Ω V mV		
∼ mV			1000 V R.M.S. für Kurzschluss <0,3 A
Ω			
→			
⊣⊢			
μA≂	μA . mA	СОМ	440 mA / 1000 V 30 kA flink
μΑ 、 mA·A 、			
mA·A 	А	COM	11 A / 1000 V 30 kA flink
лл % für U1252B	ллл % OUT ms	СОМ	
Ė∄CHG	E∃CHG	СОМ	440 mA / 1000 V flink

Agilent U1251B und U1252B Digitales Handmultimeter Benutzer- und Servicehandbuch

Vornehmen von Messungen

```
Grundlegendes zu den Messanweisungen 24
Messen der Spannung 24
 Messen der AC-Spannung 25
 Messen der DC-Spannung 26
Messen der Stromstärke 27
 μA & mA (Messung) 27
 Prozentuale Skalierung von 4 mA bis 20 mA 29
 A-Messung (Ampere) 31
Frequenzzähler Zähler 32
Messwiderstand, Leitfähigkeit und Testdurchgang 34
Testen von Dioden 38
Messen der Kapazität 41
Messen der Temperatur 43
Warnmeldungen und Warnungen während der Messung 47
 Überspannungswarnung 47
 Eingangswarnung 47
 Ladeanschlusswarnung 48
```

In diesem Kapitel wird beschrieben, wie mit den digitalen Handmultimetern U1251B und U1252B von Agilent Messungen vorgenommen werden.

Grundlegendes zu den Messanweisungen

Halten Sie beim Durchführen von Messungen die nummerierten Schritte in den Diagrammen ein. Eine Beschreibung der Schritte finden Sie in der nachfolgenden Tabelle 2-1.

Tabelle 2-1 Beschreibungen der nummerierten Schritte

Nr.	Anweisungen
1	Drehen Sie den Drehregler auf die im Diagramm gezeigte Messoption
2	Schließen Sie die Testleitungen an den im Diagramm gezeigten Eingangsanschlüssen an
3	Prüfen Sie die Testpunkte
4	Lesen Sie die Ergebnisse von der Anzeige ab

Messen der Spannung

Das U1251B und U1252B bietet True-RMS-Messwerte für AC-Messungen, die genau für Sinuskurven, Rechteckwellen, Dreieckwellen, treppenförmigen Wellen und anderen Wellenformen ohne ein DC-Offset geeignet sind.

Für AC mit DC-Offset verwenden Sie AC + DC-Messungen an der Drehreglerposition **▼V** oder **▼mV**. Dies gilt nur für U1252B.

WARNUNG

Stellen Sie vor jeder Messung sicher, dass Sie die richtigen Anschlüsse verwenden. Um eine Beschädigung des Geräts zu vermeiden, überschreiten Sie nicht die Eingangsbeschränkung.

Messen der AC-Spannung

Richten Sie das Multimeter wie in Abbildung 2-1 dargestellt ein, um die AC-Spannung zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

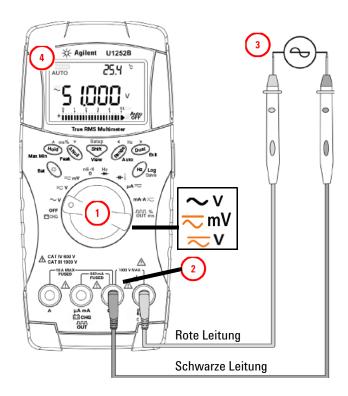


Abbildung 2-1 Messen der AC-Spannung

HINWEIS

Drücken Sie (Dual), um die Frequenz auf der Sekundäranzeige anzuzeigen. Eine Liste der verschiedenen Kombinationen auf der Sekundäranzeige finden Sie in Tabelle 1-8, "Auswählen der Anzeige mit der Dual-Taste" auf Seite 17.

Messen der DC-Spannung

Richten Sie das Multimeter wie in Abbildung 2-2 dargestellt ein, um die DC-Spannung zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

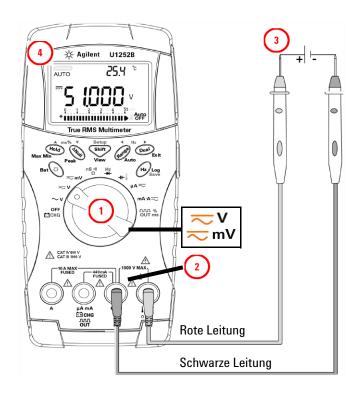
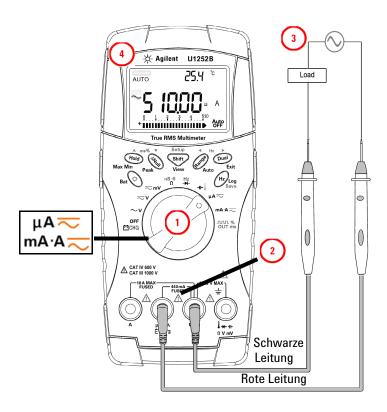


Abbildung 2-2 Messen der DC-Spannung

Messen der Stromstärke


μA & mA (Messung)

Richten Sie das Multimeter wie in Abbildung 2-3 dargestellt ein, um µA und mA zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

HINWEIS

- Drücken Sie auf , sofern erforderlich, um sicherzustellen, dass · · · auf der Anzeige dargestellt wird.
- Bei mA-Messungen stellen Sie den Drehregler auf $\mu A \sim$ und verbinden die positive Testleitung mit µA.mA.
- Bei mA-Messungen stellen Sie den Drehregler auf mA·A tund verbinden die positive Testleitung mit µA.mA.
- Bei A-Messungen (Ampere) stellen Sie den Drehregler auf mA·A = und verbinden die positive Testleitung mit A.
- Drücken Sie auf (Dual), um Doppelmessungen anzuzeigen. Eine Liste der Doppelmessungen finden Sie in Tabelle 1-8, "Auswählen der Anzeige mit der Dual-Taste" auf Seite 17.

2 Messungen vornehmen

Abbildung 2-3 Messen der μ A- und mA-Stromstärke

Prozentuale Skalierung von 4 mA bis 20 mA

Richten Sie das Multimeter wie in Abbildung 2-4 dargestellt ein, um die prozentuale Skalierung zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

HINWEIS

- Drücken Sie auf , um die Anzeige der prozentualen Skalierung auszuwählen. Stellen Sie sicher, dass $\frac{3}{1-21}$ oder $\frac{3}{4-21}$ angezeigt wird.
- Die prozentuale Skalierung für 4 mA bis 20 mA oder 0 mA bis 20 mA wird mit der entsprechenden DC mA-Messung berechnet. Das U1251B bzw. das U1252B stellt automatisch die beste Auflösung entsprechend der nachfolgenden Tabelle 2-2 ein.
- Drücken Sie auf (Range), um den Messbereich zu ändern.

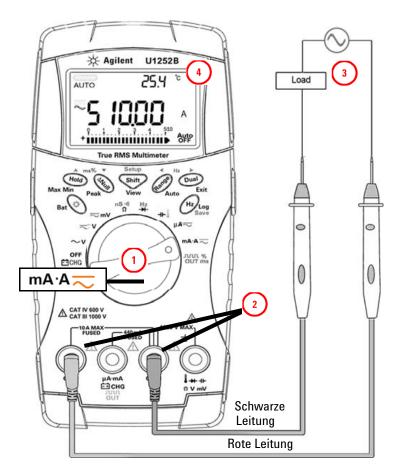
Die prozentuale Skalierung für 4 mA bis 20 mA oder 0 mA bis 20 mA ist wie folgt in zwei Bereiche eingeteilt:

Tabelle 2-2 Prozentuale Skalierung und Messbereich

Prozentuale Skalierung (4 mA bis 20 oder 0 mA bis 20 mA) — Immer automatische Bereichsauswahl	DC mA Automatische oder manuelle Bereichsauswahl	
999,99%	- 50 mA, 500 mA	
9999,9%		

2 Messungen vornehmen




Abbildung 2-4 Messen der Skalierung von 4-20 mA

A-Messung (Ampere)

Richten Sie das Multimeter wie in Abbildung 2-5 dargestellt ein, um die A-Messung (Ampere) vorzunehmen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

HINWEIS

Verbinden Sie die roten und schwarzen Messleitungen entsprechend mit den Eingabeanschlüssen A und COM. Das Messgerät wird automatisch zur A-Messung eingerichtet, wenn die rote Messleitung im A-Anschluss steckt.

Abbildung 2-5 A-Stomstärkenmessung (Ampere)

Frequenzzähler Zähler

WARNUNG

- Verwenden Sie den Frequenzzähler für Niedrigspannungsanwendungen.
- Bei einem Eingangswert höher als 30 Vpp müssen Sie den Frequenzmessungsmodus für Stromstärke- oder Spannungsmessungen statt den Frequenzzähler verwenden.

Richten Sie das Multimeter wie in Abbildung 2-6 dargestellt ein, um die Frequenz zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

HINWEIS

- Drücken Sie , um die Frequenzzählerfunktion (Hz) auszuwählen. "-1-" auf der Sekundäranzeige bedeutet, dass die Eingabesignalfrequenz durch 1 dividiert. Dies ermöglicht die Messung von Signalen mit einer maximalen Frequenz von 985 kHz.
- Wenn die Messwerte instabil oder gleich null sind, drükken Sie Range, um eine Division der Eingangssignalfrequenz durch 100 auszuwählen.
 Dies ermöglicht die Messung von Signalen mit einer höheren Frequenz von bis zu 20 MHz.
- Das Signal liegt außerhalb des Bereichs, wenn die Messwerte nach dem o. g. Schritt immer noch instabil sind.
- Während die Sekundäranzeige "-1-" anzeigt, können Sie durch die Impulsbreite (ms), den Arbeitszyklus (%) und die Frequenzmessung (Hz) wechseln, indem Sie (Hz) drücken.

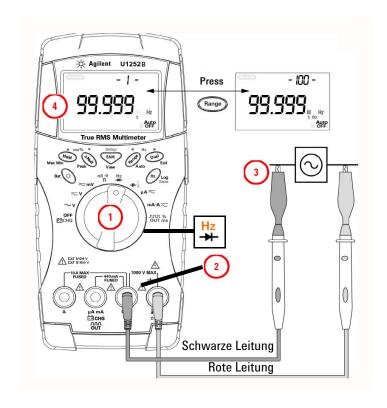


Abbildung 2-6 Messungsfrequenz

Messwiderstand, Leitfähigkeit und Testdurchgang

VORSICHT

Trennen Sie alle Schaltkreise und entladen Sie alle Hochspannungskondensatoren, bevor Sie den Widerstand messen, um möglichen Schaden am Messgerät oder an dem Gerät, das Sie testen, zu verhindern.

Richten Sie das Multimeter wie in Abbildung 2-7 dargestellt ein, um den Widerstand zu messen. Messen Sie dann die Testpunkte (durch Parallelschalten des Widerstands) und lesen Sie die Anzeige ab.

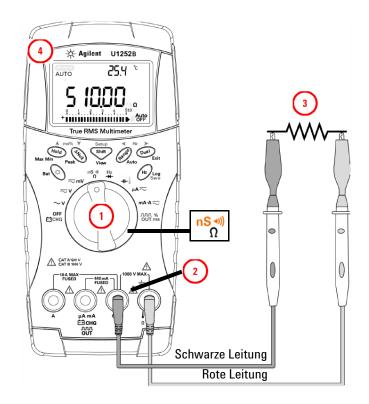


Abbildung 2-7 Messungswiderstand

Drücken Sie with, um durch akustischen Durchgangstest, Leitfähigkeit und Widerstandstest, wie in Abbildung 2-8 dargestellt, zu wechseln.

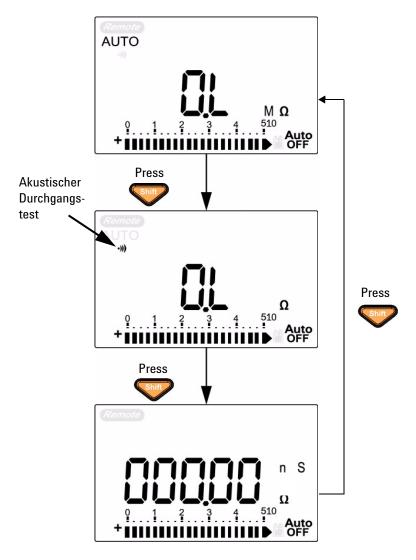


Abbildung 2-8 Akustischer Durchgangstest, Leitfähigkeit und Widerstandstest.

Akustischer Durchgangstest

Im Bereich von 0–500 Ω ertönt ein Ton, wenn der Widerstandswert unter $10~\Omega$ fällt. Für die anderen Bereiche ertönt ein Ton, wenn der Widerstand unter die typischen Werte, wie in der Tabelle 2-3 unten angegeben, fällt.

Tabelle 2-3 Messbereiche für akustische Durchgangstests

Messbereich	Signaltonschwellenwert
500,00 Ω	< 10 Ω
5,0000 Ω	< 100 Ω
50,000 Ω	<1 kΩ
500,00 Ω	< 10 kΩ
5,0000 MΩ	< 100 kΩ
50,000 MΩ	<1 MΩ
500,00 MΩ	< 10 MΩ

Leitfähigkeit

Richten Sie das Multimeter wie in Abbildung 2-9 dargestellt ein, um die Leitfähigkeit zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

Leitfähigkeitsmessungen vereinfachen Messungen mit hohem Widerstand von aktuell 100 G Ω .

Da Messungen bei hohem Widerstand anfällig für Rauschen sind, können Sie Messungen bei durchschnittlichen Bedingungen im Modus für die dynamische Aufzeichnung aufzeichnen. Weitere Informationen finden Sie in Abschnitt "Dynamische Aufzeichnung" auf Seite 50.

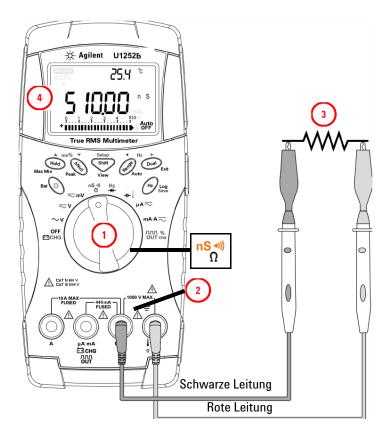


Abbildung 2-9 Leitfähigkeitsmessung

Testen von Dioden

VORSICHT

Trennen Sie alle Schaltkreise und entladen Sie alle hohen Hochspannungskondensatoren, bevor Sie Dioden messen, um möglichen Schaden an Messgeräten zu verhindern.

Um eine Diode zu testen, schalten Sie den Schaltkreis aus und entfernen die Diode aus dem Schaltkreis. Richten Sie das Multimeter wie in Abbildung 2-10 dargestellt ein und schließen Sie dann die rote Testleitung am positiven Anschluss (Anode) und die schwarze Testleitung am negativen Anschluss (Kathode) an. Lesen Sie die Anzeige ab.

HINWEIS

- Die Kathode ist die Seite mit dem/den umlaufenden Streifen.
- Das Messgerät kann eine Vorwärtsspannung von Dioden von bis zu 2,1 V anzeigen. Die typische Vorwärtsspannung von Dioden liegt im Bereich zwischen 0,3 und 0,8 V.

Anschließend vertauschen Sie die Testleitungen und messen die an den Dioden anliegende Spannung erneut, wie in Abbildung 2-11 auf Seite 40 gezeigt. Das Ergebnis des Diodentests basiert auf folgenden Kriterien:

- Die Diode wird als gut betrachtet, wenn das Messgerät "OL" im Sperrvorspannungsmodus anzeigt.
- In der Diode liegt ein Kurzschluss vor, wenn das Gerät ungefähr 0 V in beiden Modi, Vorwärtsspannungsmodus und Sperrvorspannungsmodus, anzeigt, und das Gerät kontinuierlich piept.
- Die Diode wird als offen betrachtet, wenn das Messgerät "OL" im Vorwärtsspannungsmodus und im Sperrvorspannungsmodus anzeigt.

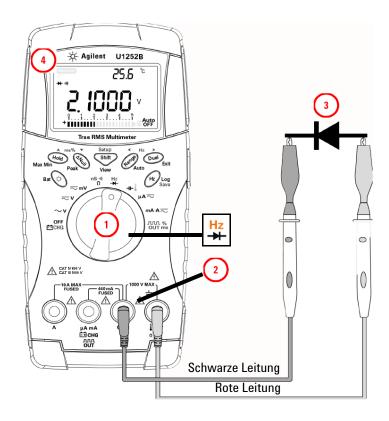


Abbildung 2-10 Messen der Vorwärtsspannung einer Diode

2 Messungen vornehmen

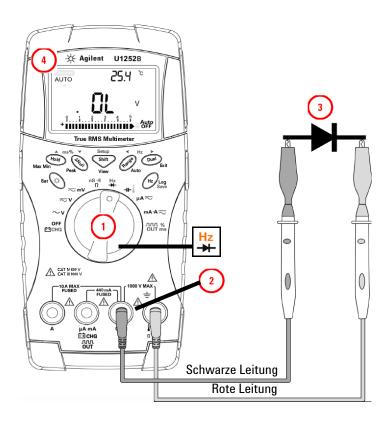


Abbildung 2-11 Messen der Sperrvorspannung einer Diode

Messen der Kapazität

VORSICHT

Trennen Sie den Schaltkreis und entladen Sie alle Hochspannungskondensatoren, bevor Sie die Kapazität messen, um möglichen Schaden am Messgerät oder an dem Gerät, das Sie testen, zu verhindern. Um zu bestätigen, dass die Kondensatoren entladen sind, verwenden Sie die DC-Spannungsfunktion.

Das Messgerät misst die Kapazität, indem sie den Kondensator über einen bestimmten Zeitraum mit einer bekannten Stromstärke auflädt, die Spannung misst und dann die Kapazität berechnet. Je größer der Kondensator, desto länger die Ladezeit. Im Folgenden finden Sie einige Tipps für die Messung der Kapazität:

- Zum Messen von Kapazitäten über 10.000 µF entladen Sie erst den Kondensator und wählen dann einen angemessenen Bereich für die Messung aus. Dadurch wird die Messzeit beschleunigt, um den richtigen Kapazitätswert zu erhalten.
- Um kleine Kapazitäten zu messen, drücken Sie bei offenen Messleitungen (ANull), um die Restkapazität des Messgeräts und der Leitungen zu subtrahieren.

HINWEIS

f bedeutet, dass der Kondensator aufgeladen wird. 🗗 bedeutet, dass der Kondensator entladen wird.

Richten Sie das Multimeter wie in Abbildung 2-12 dargestellt ein. Legen Sie die rote Testleitung am positiven Anschluss des Kondensators und die schwarze am negativen Anschluss an. Lesen Sie die Anzeige ab.

2 Messungen vornehmen

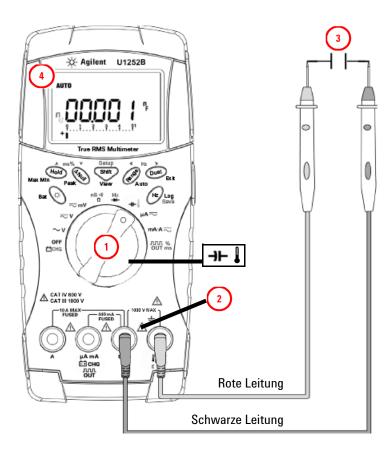


Abbildung 2-12 Kapazitätsmessungen

Messen der Temperatur

VORSICHT

Knicken Sie die Thermoelementkabel nicht im spitzen Winkel. Das wiederholte Knicken über einen längeren Zeitraum kann zum Abbrechen des Anschlusses führen.

Der Leistentyp der Thermoelementsonde eignet sich zum Messen von Temperaturen von -20 °C bis 200 °C in PTFE-kompatiblen Umgebungen.

Verwenden Sie den Leistentyp der Thermoelementsonde nicht außerhalb des empfohlenen Betriebstemperaturbereichs. Tauchen Sie die Thermoelementsonde nicht in Flüssigkeiten ein. Um beste Ergebnisse zu erzielen, verwenden Sie für jede Anwendung eine Thermoelementsonde – eine Immersionsleitung für Flüssigkeiten oder Gel, eine Luftleitung für Luftmessungen.

Richten Sie das Multimeter wie in Abbildung 2-15 dargestellt ein, um die Temperatur zu messen, oder führen Sie folgende Schritte aus:

- , um die Temperaturmessung 1 Drücken Sie auszuwählen.
- 2 Schließen Sie die Minitemperatursonde am Übertragungsmodul ohne Ausgleich an, wie in Abbildung 2-13 gezeigt.
- Schließen Sie die Wärmesonde dann mit dem Adapter an die Eingangsanschlüsse des Multimeters an, wie in Abbildung 2-14 gezeigt.
- Schließen Sie das Übertragungsmodul ohne Ausgleich mit der Miniwärmesonde an den Eingangsanschlüssen des Multimeters an. Für eine optimale Messleistung sollte sich das Multimeter mindestens eine Stunde in der Betriebsumgebung befinden, damit sich die Einheit an die Umgebungstemperatur anpassen kann.
- **5** Reinigen Sie die Messoberfläche und achten Sie darauf, dass die Sonde die Oberfläche sicher berührt. An der Oberfläche darf keine Spannung anliegen.
- 6 Wenn Sie über der Außentemperatur messen, verschieben Sie das Thermoelement entlang der Oberfläche, bis Sie zum höchsten Temperaturmesswert kommen.
- 7 Wenn Sie unter der Außentemperatur messen, verschieben Sie das Thermoelement entlang der Oberfläche, bis Sie zum niedrigsten Temperaturmesswert kommen.

2 Messungen vornehmen

8 Verwenden Sie für schnelle Messungen den Adapter für den Null-Grad-Ausgleich, um die Temperaturänderung des Thermoelementsensors zu sehen. Der Adapter für den Null-Grad-Ausgleich hilft Ihnen sofort bei der Messung der relativen Temperatur.

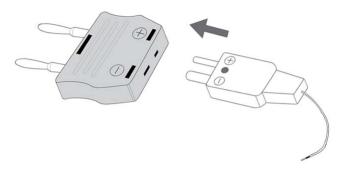


Abbildung 2-13 Anschließen der Wärmesonde am Übertragungsadapter ohne Ausgleich

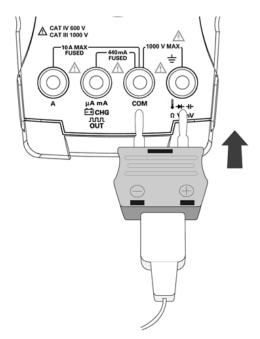


Abbildung 2-14 Anschließen der Sonde mit Adapter am Multimeter

Wenn Sie in einer Umgebung arbeiten, in der die Umgebungstemperaturen nicht konstant sind, gehen Sie wie folgt vor:

- 1 Drücken Sie Dual, um den Null-Grad-Ausgleich auszuwählen. Dies ermöglicht Ihnen eine schnelle Messung der relativen Temperatur.
- 2 Vermeiden Sie den Kontakt zwischen der Thermoelementsonde und der Messoberfläche.
- 3 Nachdem Sie eine konstante Messung erhalten haben, drücken Sie (ANUII), um eine Messung als relative Referenztemperatur festzulegen.
- 4 Berühren Sie die Messoberfläche mit der Thermoelementsonde.
- **5** Lesen Sie die relative Temperatur von der Anzeige ab.

2 Messungen vornehmen

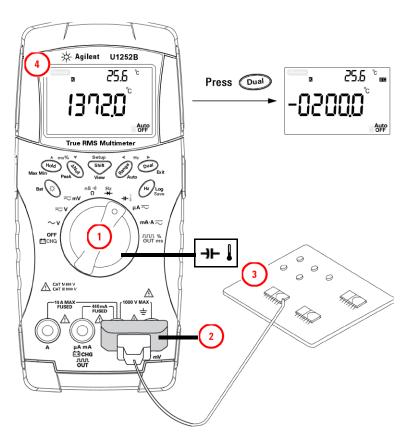


Abbildung 2-15 Oberflächentemperaturmessung

Warnmeldungen und Warnungen während der Messung

Überspannungswarnung

WARNUNG

Beachten Sie diese Warnung zu Ihrer eigenen Sicherheit. Wenn Sie gewarnt werden, entfernen Sie die Testleitungen von der Messoberfläche.

Das Messgerät bietet eine Überspannungswarnung für Spannungsmessungen sowohl im automatischen als auch im manuellen Bereichsmodus. Das Gerät piept periodisch sobald die zu messende Spannung 1010 V überschreitet. Beachten Sie diese Warnung zu Ihrer eigenen Sicherheit.

Eingangswarnung

Das Gerät lässt ein Warnsignal ertönen, wenn die Testleitung in den A-Eingabeanschluss eingesteckt wurde, aber der Drehregler nicht an der entsprechenden mA.A-Position steht. Die Primäranzeige zeigt blinkend "A-Err" an, bis die Testleitung aus dem A-Eingangsanschluss entfernt wurde. Siehe Abbildung 2-16.



Abbildung 2-16 Eingangsanschlusswarnung

Ladeanschlusswarnung

Das Gerät lässt ein Warnsignal ertönen, wenn am

CHG-Anschluss ein Spannungsniveau von mehr als 5 V

erkannt wird, und der Drehregler sich nicht in der entsprechenden Position

OFF
befindet. Die Primäranzeige zeigt blinkend
"Ch.Err" an, bis die Leitung vom Eingangsanschluss CHG

entfernt ist. Siehe unten stehende Abbildung 2-17.

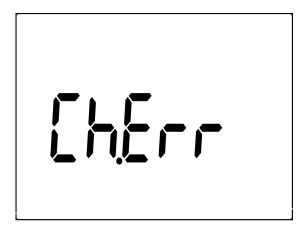


Abbildung 2-17 Ladeanschlusswarnung

Intervall-Protokollierung 63

Remotekommunikation 71

Überprüfen der protokollierten Daten 65

In diesem Kapitel werden Funktionen und Merkmale der digitalen Handmultimeter U1251B und U1252B von Agilent beschrieben.

Protokollansichtsmodus Rechteckwellenausgabe (für U1252B) 67

Dynamische Aufzeichnung

Der dynamische Aufzeichnungsmodus kann zum Ermitteln von periodischem Einschalten oder Ausschalten von Spannung oder von Stromüberspannung verwendet werden. Außerdem kann er die Messleistung überprüfen, ohne dass Sie während dieses Prozesses anwesend sein müssen. Während die Messwerte aufgezeichnet werden, können Sie andere Aufgaben durchführen.

Die Durchschnittsmesswerte sind zum Ausgleich von instabilen Eingaben, zum Schätzen der Zeit in Prozent, die der Schaltkreis arbeitet, und zum Überprüfen der Schaltkreisleistung hilfreich. Die verstrichene Zeit wird auf der Sekundäranzeige angegeben. Der Höchstwert für die Zeit beträgt 99999 Sekunden. Wenn dieser Wert überschritten wurde, wird "OL" auf der Anzeige angegeben.

- 1 Drücken Sie (Hold) länger als 1 Sekunde, um den dynamischen Aufzeichnungsmodus zu aktivieren. Das Messgerät befindet sich jetzt im kontinuierlichen Modus oder im Nicht-Datenhaltemodus (Nicht-Auslösermodus). "MAXMINAVG" und der Durchschnittswert der Messung werden angezeigt. Das Multimeter erzeugt einen Signalton, wenn ein neuer maximaler oder minimaler Wert aufgezeichnet wurde.
- 2 Drücken Sie (Hold), um zwischen den Messwerten Max, Min, Avg (Durchschnitt) und dem aktuellen Messwert zu wechseln. Die Werte MAX, MIN, AVG und MAXMINAVG leuchten zu den entsprechenden angezeigten Messwerten auf.
- 3 Drücken Sie Hold oder Dual länger als 1 Sekunde, um den dynamischen Aufzeichnungsmodus zu verlassen.

HINWEIS

- Drücken Sie Dual, um erneut die dynamische Aufzeichnung zu starten.
- Der Durchschnittswert ist der wahre Durchschnittswert von allen im dynamischen Aufzeichnungsmodus vorgenommenen Messungen.
 Wenn eine Überspannung aufgezeichnet wurde, wird die Durchschnittsberechnungs-Funktion angehalten, und der Durchschnittswert ist "OL" (Überspannung). Auto OFF

 ist im dynamischen Aufzeichnungsmodus deaktiviert.

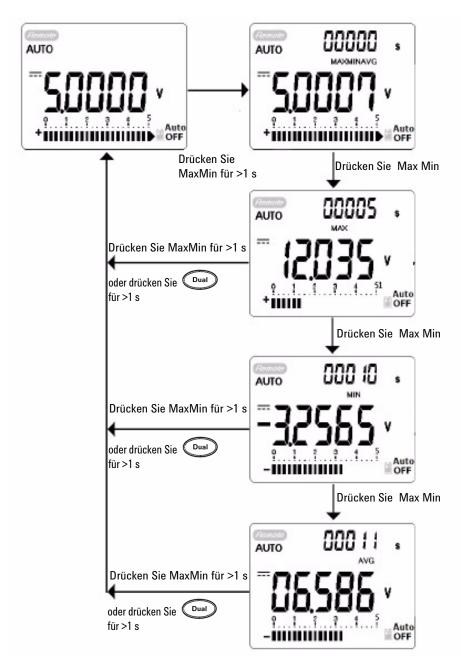


Abbildung 3-1 Dynamische Aufzeichnung

Halten von Daten (Halten mit Auslöser)

Die Funktion zum Halten von Daten ermöglicht Benutzern, die Anzeige der digitalen Werte zu fixieren.

- 1 Drücken Sie Hold, um die angezeigten Werte zu fixieren, und um den manuellen Auslösermodus zu aktivieren. **TRIG** HOLD wird angezeigt.
- 2 Drücken Sie Hold, um den nächsten zu messenden Wert zu fixieren. TRIG blinkt, bevor der neue Wert auf der Anzeige aktualisiert wird.
- **3** Halten Sie Hold oder Dual länger als 1 Sekunde gedrückt, um diesen Modus zu beenden.

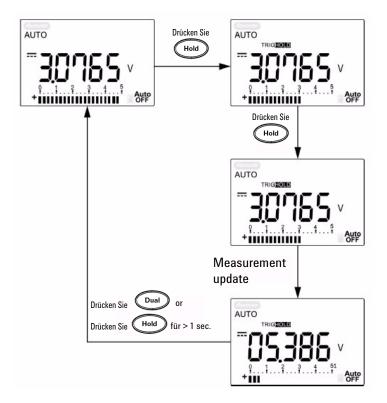


Abbildung 3-2 Datenhalten

Halten aktualisieren

Die Funktion "Halten aktualisieren" ermöglicht Ihnen, die angezeigten Werte zu halten. Die Balkendiagrammanzeige wird nicht angehalten und gibt weiterhin den momentan gemessenen Wert wieder. Verwenden Sie den Einrichtungsmodus, um den Modus "Halten aktualisieren" zu aktivieren, wenn Sie mit schwankenden Werten arbeiten. Diese Funktion wird automatisch ausgelöst oder aktualisiert den gehaltenen Wert mit neuen Messwerten und erinnert Sie durch einen Signalton.

- 1 Drücken Sie Hold, um den Modus "Halten aktualisieren" zu aktivieren. Der aktuelle Wert wird gehalten, und das Symbol HOLD leuchtet auf.
- 2 Sobald die Abweichung der Messwerte die Einstellung des Änderungszählers überschreitet können neue Messwerte gehalten werden. Solange der Messwert aktualisiert wird, bis er stabil ist, blinkt das Symbol HOLD.
- 3 Das Symbol HOLD blinkt nicht mehr, wenn der neue Messwert stabil ist und dieser dann auf der Anzeige angegeben wird. Das Symbol wird weiterhin angezeigt und das Multimeter gibt zur Erinnerung ein akustisches Signal aus.
- 4 Drücken Sie erneut Hold, um den Modus "Halten aktualisieren" zu verlassen.

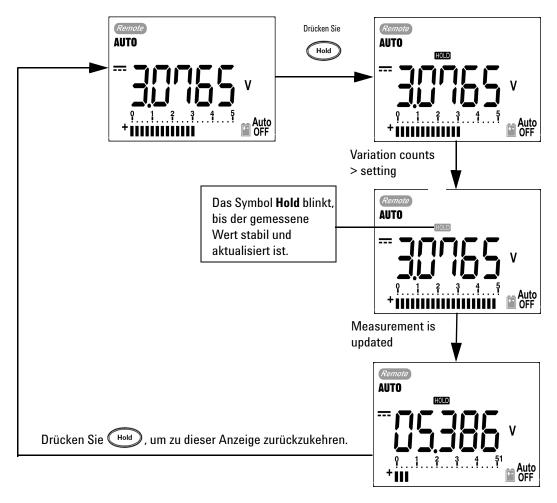


Abbildung 3-3 Modus "Halten aktualisieren"

HINWEIS

- Der gehaltene Wert wird für Spannung und Strommessungen nicht aktualisiert, wenn die Messwerte unter 500 Zahlen liegen.
- Der gehaltene Wert wird für Widerstands- und Diodenmessungen nicht aktualisiert, wenn der Messwert sich im Status "OL" (offener Status) befindet.
- Der gehaltene Wert wird möglicherweise nicht aktualisiert, wenn die Messwerte keinen stabilen Status für alle Messungen erreichen.

Null (Relative)

Die Null-Funktion zieht einen gespeicherten Wert von der aktuellen Messung ab und zeigt den Unterschied zwischen beiden an.

- 1 Drücken Sie (ANUI), um die angezeigte Messung als Referenzwert zu speichern, der von nachfolgendenen Messungen abgezogen wird, und die Anzeige auf 0 zurückzusetzen. Null wird angezeigt.
- 2 Drücken Sie (anul), um den gespeicherten Referenzwert anzuzeigen. Null blinkt für 3 Sekunden auf, bis die Anzeige wieder zu null zurückkehrt.
- **3** Um diesen Modus zu beenden, drücken Sie ANUI , während Null in der Anzeige aufblinkt.

HINWEIS

- Null kann sowohl für die automatische als auch für die manuelle Bereichsauswahl festgelegt werden, aber nicht im Fall einer Überspannung.
- In einer Widerstandsmessung liest das Messgerät aufgrund der Testleitungungen einen anderen Wert als null. Verwenden Sie die Null-Funktion, um die Anzeige auf null einzustellen.
- In einer DC-Spannungsmessung beeinflusst der Wärmeeffekt die Genauigkeit. Kürzen Sie die Testleitungen, und drücken Sie Null, sobald der angezeigte Wert stabil ist, um die Anzeige auf null einzustellen.

3 Merkmale und Funktionen

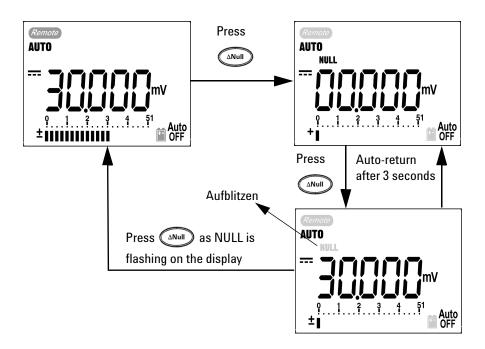


Abbildung 3-4 Null (relative)

Dezibelanzeige

Die Operation für den Spannungspegel (dBm) berechnet die Spannung, die an einem Bezugswiderstand relativ zu 1 mW erzeugt wird. Diese Operation kann zur Dezibelkonvertierung auf Messungen für DC V (Gleichstrom), AC V (Wechselstrom) sowie auf AC + DC V angewendet werden. Die Spannungsmessung wird mithilfe der folgenden Formel zu dBM konvertiert:

$$dBm = 10 \log_{10} \left[\frac{1000 \text{ x (measuring value)}^2}{\text{reference impedance}} \right]$$

Der Referenzwiderstand kann von 1~9999 Ω im Einrichtungsmodus ausgewählt werden. Der Standardwert ist 50Ω .

Das Dezibel der Spannung wird im Bezug auf 1 V berechnet. Die Formel lautet gemäß der Spannungsmessung unten: $dBV = 20 \log_{10} Vin$

1 An der Drehreglerposition $\sim V$, $\sim V$ oder $\sim mV$ drücken Sie $\stackrel{\text{Dual}}{}$, um zur dBM-Messung auf der Primäranzeige zu wechseln. Die AC-Spannungsmessung wird auf der Sekundäranzeige angegeben.

HINWEIS

Wenn der Drehregler zur Position "~ V" wechselt, dann drücken Sie sie ", um zwischen den dBV- und dBm-Messungen zu wechseln. Die dBm- oder dBV-Messung kann unter der Position ACV ausgewählt werden. Die Auswahl dient als Referenz für andere Spannungsmessungen.

2 Drücken Sie Dual länger als 1 Sekunde, um diesen Modus zu beenden.

3

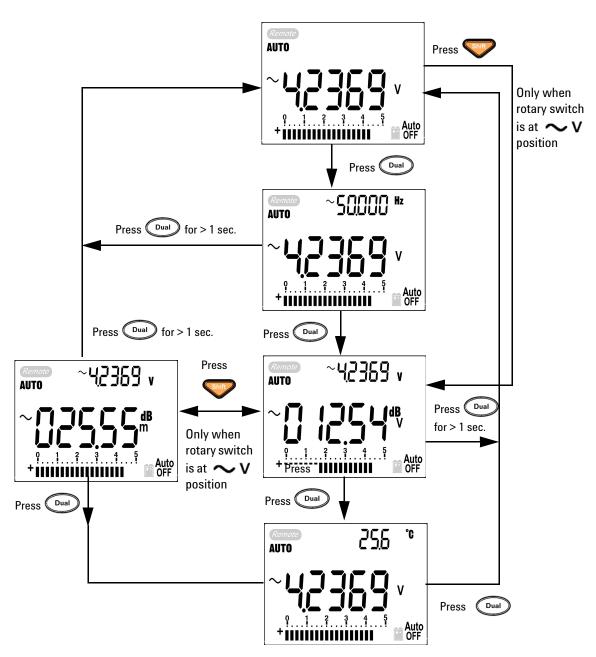


Abbildung 3-5 dBm/dBV-Anzeigemodus

1-ms-Spitzenwert-Haltemodus

Der Spitzenwert-Haltemodus ermöglicht die Messung von Spitzenspannungen für die Analyse von Komponenten wie Energieverteilungstransformatoren und Kompensationskondensatoren. Die erhaltene Spitzenspannung kann zum Bestimmen des Spitzenfaktors verwendet werden:

Spitzenfaktor = Spitzenwert/True RMS-Wert

- 1 Drücken Sie Anul länger als 1 Sekunde, um den 1-ms-Spitzenwert-Haltemodus EIN / AUS zu schalten.
- 2 Drücken Sie Hold , um zwischen den Max- und Min-Spitzenwerten zu wechseln. HOLD MAX gibt den maximalen Spitzenwert an, während HOLD MIN den minimalen Spitzenwert angibt.

HINWEIS

- Wenn der Messwert "**OL**" ist, drücken Sie Range", um den Messbereich zu ändern und um die Spitzenaufnahmemessung erneut zu starten.
- Wenn Sie die Spitzenaufnahme erneut starten möchten, drücken Sie Dual
- 3 Drücken Sie Dual oder ANUI länger als eine Sekunde, um diesen Modus zu verlassen.
- **4** Gemäß den Messungen in Abbildung 3-6 auf Seite 60 ist der Spitzenfaktor 2,5048/1,768 =1,416.

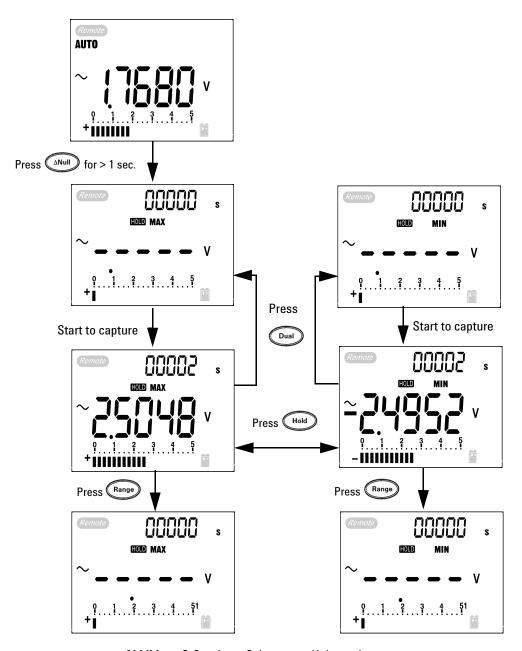


Abbildung 3-6 1-ms-Spitzenwert-Haltemodus

Datenprotokollierung

Die Funktion zur Datenprotokollierung erleichtert das Aufzeichnen von Testdaten für zukünftige Überprüfungen oder Analysen. Im permanenten Speicher abgelegte Daten bleiben gespeichert, wenn das Multimeter ausgeschaltet ist, oder wenn die Batterie gewechselt wird.

Bei den beiden Optionen handelt es sich um Funktionen zur manuellen (HAND) und Intervallprotokollierung (TIME), die im Einrichtungsmodus festgelegt werden.

Die Datenprotokollierung zeichnet nur die Werte der Primäranzeige auf.

HINWEIS

Um die Datenprotokollierungsfunktion verwenden zu können, müssen Sie das Multimeter mithilfe eines (separat erhältlichen) U1173A IR-zu-USB-Kabels mit einem PC verbinden und die Datenprotokollierungssoftware von der Agilent Website herunterladen. Bitte rufen Sie http://www.agilent.com/find/hhTechLib auf, um die Software herunterzuladen.

Manuelle Protokollierung

Stellen Sie zunächst sicher, dass im Einrichtungsmodus die manuelle Protokollierung angegeben ist.

- 1 Drücken Sie Hz länger als 1 Sekunde, um die aktuellen Werte und Funktionen von der Primäranzeige im Speicher abzulegen. LOG und der Protokollierungsindex werden angezeigt. Der Protokollierungsindex lässt die Sekundäranzeige für 3 Sekunden blinken, bevor er zur normalen Anzeige zurückkehrt.
- 2 Drücken und halten Sie (Hz) erneut für den nächsten Wert, der im Speicher abgelegt werden soll.

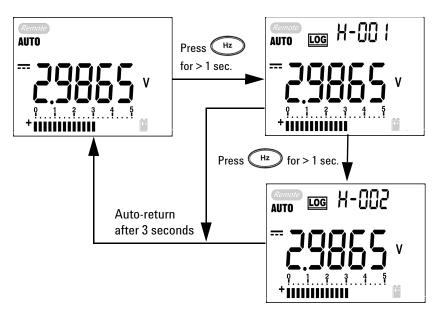


Abbildung 3-7 Manuelle Protokollierung)

HINWEIS

Die maximale Anzahl der Daten die gespeichert werden können, sind 100 Einträge. Wenn die 100 Einträge vorliegen, wird "**FULL**" auf der Sekundäranzeige angegeben, wie in Abbildung 3-8 dargestellt.

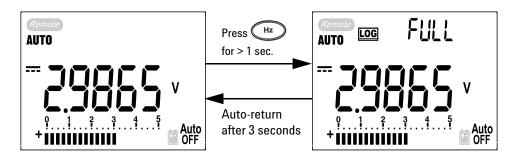


Abbildung 3-8 Volles Protokoll

Intervall-Protokollierung

Stellen Sie zunächst sicher, dass im Einrichtungsmodus die Intervallprotokollierung (Zeit) angegeben ist.

1 Drücken Sie Hz länger als 1 Sekunde, um den aktuellen Wert und die aktuelle Funktion von der Primäranzeige im Speicher abzulegen. LOG und der Protokollierungsindex werden angezeigt. Die Messwerte werden in jedem Intervall, das im Einrichtungsmodus festgelegt wurde, automatisch im Speicher protokolliert.

HINWEIS

Die maximale Anzahl der Daten, die gespeichert werden können, sind 200 Einträge. Wenn die 200 Einträge vorliegen, wird "FULL" auf der Sekundäranzeige angegeben.

2 Drücken Sie Hz länger als 1 Sekunde, um diesen Modus zu beenden.

HINWEIS

Wenn die Intervall-Protokollierung (automatisch) aktiviert ist, werden alle Tastenfeldoperationen außer die Log-Funktion deaktiviert.

3

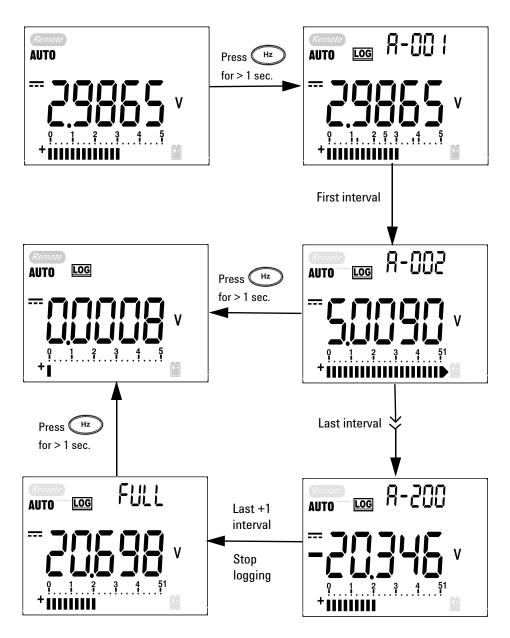


Abbildung 3-9 Intervall-Protokollierungsmodus (automatisch)

Überprüfen der protokollierten Daten

- 1 Drücken Sie länger als 1 Sekunde, um den Protokollansichtsmodus zu aktivieren. Der letzte aufgenommene Eintrag und der letzte Protokollierungsindex werden angezeigt.
- 2 Drücken Sie , um zwischen der manuellen Protokollierung und dem Intervall-Protokollansichtsmodus (automatisch) zu wechseln.
- 3 Drücken Sie oder und durch die protokollierten Daten zu navigieren. Drücken Sie und den ersten Datensatz auszuwählen, und zur Auswahl des letzten Datensatzes für schnelle Navigation.
- 4 Drücken Sie Hz länger als 1 Sekunde, um die protokollierten Daten im jeweiligen Protokollansichtsmodus zu löschen.
- 5 Drücken Sie länger als 1 Sekunde, um den Modus zu beenden.
- 6 Während der Datenüberprüfung entweder im manuellen Protokollierungsmodus oder im Intervall-Protokollierungsmodus, drücken Sie die Taste **LOG** länger als eine Sekunde, um alle jeweiligen Protokollierungseinträge zu löschen.

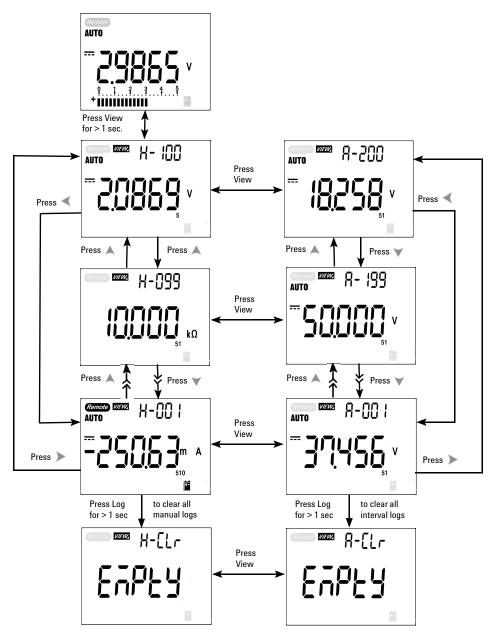


Abbildung 3-10 ProtokollansichtsmodusRechteckwellenausgabe (für U1252B)

Protokollansichtsmodus Rechteckwellenausgabe (für U1252B)

Die Rechteckwellenausgabe kann verwendet werden, um eine Impulsbreitemodulation (Pulse Width Modulation, PWM) zu erzeugen oder um einen synchronen Zeitgeber (Baudrategenerator) bereitzustellen. Sie können diese Funktion auch zum Überprüfen und Kalibrieren von Durchflussmesseranzeigen, Zählern, Tachometern, Oszilloskopen, Frequenzwandlern, Frequenzübermittlern und anderen Frequenzeingabegeräten verwenden.

- 1 Drehen Sie den Drehregler in die Position out ms. Die Standardwerkseinstellung ist 600 Hz auf der Sekundäranzeige und 50% des Arbeitszyklus auf der Primäranzeige.
- 2 Drücken Sie oder , um zu den verfügbaren Frequenzen (28 Frequenzen stehen zur Auswahl) zu wechseln:

Frequenz (Hz)

0,5, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 480, 600, 800, 1200, 1600, 2400, 4800

HINWEIS

Drücken von (

🕽 ist identisch mit Drücken auf 🔈 .

- 3 Drücken Sie , um einen Arbeitszyklus (%) auf der Primäranzeige auszuwählen.
- 4 Drücken Sie ▲ oder ▼, um den Arbeitszyklus anzupassen. Der Arbeitszyklus kann für 256 Schritte eingerichtet werden, und jeder Schritt beträgt 0.390625%. Die Anzeige gibt nur die beste Auflösung mit 0.001% an.

3 Merkmale und Funktionen

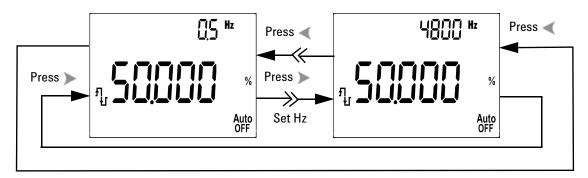


Abbildung 3-11 Frequenzanpassung für Rechteckwellenausgabe

- 5 Drücken Sie , um eine Impulsbreite (%) auf der Primäranzeige auszuwählen.
- 6 Drücken Sie ▲ oder ▼, um die Impulsbreite anzupassen. Die Impulsbreite kann für 256 Schritte eingerichtet werden, und jeder Schritt besteht aus 1/ (256 x Frequenz). Der Anzeigebereich passt sich automatisch innerhalb des Bereichs von 9.9999~9999.9 ms an.

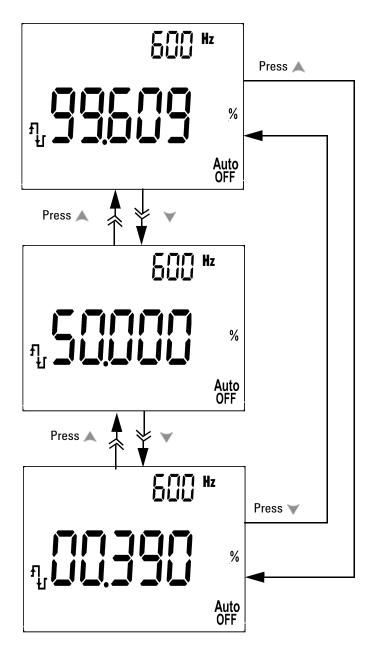


Abbildung 3-12 Arbeitszyklusanpassung für Rechteckwellenausgabe

3

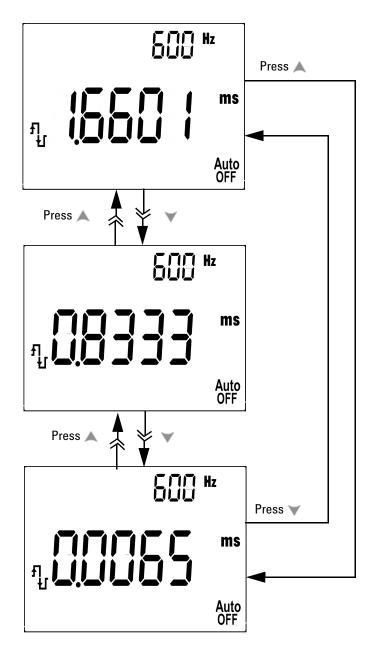
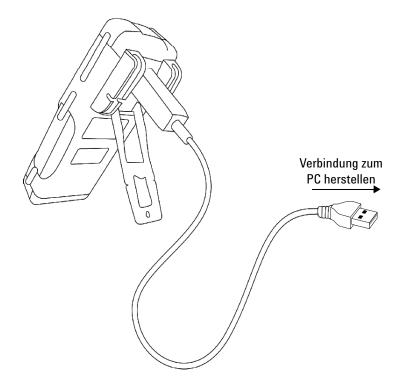



Abbildung 3-13 Impulsbreitenanpassung für Rechteckwellenausgabe

Remotekommunikation

Das Messgerät hat eine bidirektionale (Vollduplex) Kommunikationsfähigkeit, die das Speichern von Daten vom Gerät zum PC erleichtert. Zur Verwendung dieser Funktion benötigen Sie das optionale IR-USB-Kabel, das in Verbindung mit einer von der Agilent Website herunterladbaren Anwendungssoftware eingesetzt wird.

Weitere Informationen zur PC-Multimeter-Remotekommunikation erhalten Sie, wenn Sie nach dem Starten der Agilent GUI Data Logger Software die Hilfe aufrufen oder in der Kurzanleitung zum GUI Data Logger (U1251-90023) nachlesen.

Abbildung 3-14 Kabelverbindung für die Remotekommunikation

3 Merkmale und Funktionen

Ändern der Standardeinstellung

```
Auswahl des Einrichtungsmodus 74
Einstellung von Datenhaltemodus/Modus "Halten aktualisieren" 78
Einstellung des Datenprotokollierungsmodus 79
Einstellung der Thermoelementtypen (nur für U1252B) 80
Einstellung der Referenzimpedanz für dBm-Messung 81
Einstellung der Mindestfrequenzmessung 82
Einstellung der Temperatureinheit 83
Einstellung des automatischen Energiesparmodus 85
Einstellung der %-Skalenausgabe 87
Einstellung der Signaltonfrequenz 88
Einstellung des Hintergrundbeleuchtungs-Timers 89
Einstellung der Baudrate 90
Einstellung der Paritätsprüfung 91
Einstellung des Datenbits 92
Einstellung des Echomodus 93
Einstellung des Druckmodus 94
Rücksetzen auf die Standardwerkseinstellungen 95
Einstellen der Batteriespannung 96
Einstellen des DC-Filters 97
```

In diesem Kapitel wird erklärt, wie die Standardwerkseinstellungen des U1251B und U1252B geändert sowie weitere verfügbare Einstellungen vorgenommen werden.

Auswahl des Einrichtungsmodus

Gehen Sie folgendermaßen vor, um den Einrichtungsmodus zu aktivieren:

- 1 Schalten Sie das Messgerät aus (OFF).
- 2 Drücken Sie in der OFF-Position die Taste , und halten Sie diese Taste gedrückt, während Sie den Drehregler aus der Position OFF in eine beliebige andere Position drehen.

HINWEIS

Wenn ein Signalton ertönt, befindet das Messgerät sich im Einrichtungsmodus, und Sie können die Taste sind loslassen.

Gehen Sie folgendermaßen vor, um die Einstellung eines Menüelements im Einrichtungsmodus zu ändern:

- 1 Drücken Sie ✓ oder ➤ , um zwischen den Menüelementen zu wechseln.
- 2 Drücken Sie ▲ oder ▼, um zwischen den verfügbaren Einstellungen zu wechseln. Einzelheiten zu den verfügbaren Optionen finden Sie in Tabelle 4-1, "Verfügbare Einstellungsoptionen im Einrichtungsmodus".
- 3 Drücken Sie (Hz), um Änderungen zu speichern. Diese Parameter verbleiben im permanenten Speicher.
- 4 Drücken Sie länger als 1 Sekunde, um den Einrichtungsmodus zu beenden.

 Tabelle 4-1
 Verfügbare Einstellungsoptionen im Einrichtungsmodus

Menüelement		Verfügbare Einstellungsoptionen		
Anzeige	Beschreibung	Anzeige	Beschreibung	Werks-einstellung
		OFF	Aktiviert das Halten von Daten (manueller Auslöser)	
rHoLd ^[1]	Halten aktualisieren	100–1000	Stellt einen Änderungszähler für "Halten aktualisieren" ein (automatischer Auslöser)	500
FiLtE	DC-Filter	On, OFF	Aktiviert bei "On" den DC-Filter	OFF
bAtt	Batteriespannung	7,2 V, 8,4 V	Stellt die Batteriespan- nung von 7,2 V bzw. 8,4 V ein	7,2 V
rESEt	Zurücksetzen	dEFAU	Aktiviert das Zurück- setzen auf die Werk- seinstellungen, indem die Taste Hz län- ger als 1 Sekunde gedrückt wird	dEFAU
Drucken	Drucken	ON, OFF	Aktiviert das kontinu- ierliche Senden von Daten an den PC, wenn diese Funktion akti- viert ist	OFF
ЕСНО	Echo	ON, OFF	Aktiviert die Rückgabe von Zeichen an den PC, wenn die Funktion auf ON gesetzt ist	OFF
dAtAb	Datenbits	7-bit, 8-bit	Stellt die Datenbitlänge für die Remotekommu- nikation ein (Fernsteu- erung über den PC)	8-bit
PArtY	Paritätsprüfung	En, Odd, nOnE	Stellt eine gerade, eine ungerade oder keine Paritätsprüfung für die Remotekommunika- tion ein (Fernsteuerung über den PC)	nOnE

4 Ändern der Standardwerkseinstellung

 Tabelle 4-1
 Verfügbare Einstellungsoptionen im Einrichtungsmodus (Fortsetzung)

Menüelement		Verfügbare Einstellungsoptionen		Works sinetalling
Anzeige	Beschreibung	Anzeige	Beschreibung	Werks-einstellung
bAUd	Baudrate	2400 Hz, 4800 Hz, 9600 Hz, 19200 Hz	Stellt die Baudrate für die Remotekommuni- kation ein (Fernsteue- rung über den PC)	9600 Hz
b-Lit	Hintergrundbeleuch- tung	1–99 s ^[2]	Stellt einen Timer für die Hintergrundbeleuchtung ein	30 s
		OFF	Deaktiviert das auto- matische Abschalten der Hintergrundbe- leuchtung	
bEEP	Frequenz des Signal- tons des Messgeräts	2400 Hz, 1200 Hz, 600 Hz, 300 Hz	Stellt die Signaltonfre- quenz des Messgeräts ein	2400 Hz
		OFF	Deaktiviert den Signal- ton des Messgeräts	
PEmt	Prozentuale Skalierung	0–20 mA, 4–20 mA	Stellt die Anzeigeska- lierung in % ein	4–20 mA
APF	Automatische Abschaltfunktion	1–99 m ^[2]	Stellt einen Timer für die automatische Abschaltfunktion ein	. 10 m
		OFF	Deaktiviert die automa- tische Abschaltfunk- tion	
FrEq	Messbare Mindestfre- quenz	0,5 Hz, 1 Hz, 2 Hz, 5 Hz	Stellt die messbare Mindestfrequenz ein	0.5 Hz
rEF	Reference impedance for dBm measurement	1–9999 Ω $^{[2]}$	Stellt die Referenzim- pedanz für die dBm-Messung ein	50 Ω
t.CoUP ^[3]	Thermoelement	tYPE ^k	Stellt den Thermoele- menttyp auf K-Typ ein	tYPE ^K
		tYPE ^J	Stellt den Thermoele- menttyp auf J-Typ ein	
d-LoG	Datenprotokollierung	Hand	Aktiviert manuelle Datenprotokollierung	
		1–9999 s ^[2]	Stellt ein Intervall für automatische Daten- protokollierung ein	Hand

Tabelle 4-1 Verfügbare Einstellungsoptionen im Einrichtungsmodus (Fortsetzung)

Menüelement		Verfügbare Einstellungsoptionen		Werks-einstellung
Anzeige	Beschreibung	Anzeige	Beschreibung	vverks-emsteming
LC::0	Temperatur Stellt die Temperatur Temperatur Temperatur Stellt die Temperatur	d-CF	Stellt die Temperatur- messung auf °C ein. Die Anzeige kann durch Drücken von Range auf °F umge- schaltet werden	d-C
		d-F	Stellt die Temperatur- messung auf °F ein	
£ £ 7 11 [4]		aur o unigo	1 U-U	
		d-C	Stellt die Temperatur- messung auf °C ein	

Hinweise zum Einstellen von Optionen im Einrichtungsmodus:

1 Dies ist die erste Option, die nach dem Wechsel in den Einrichtungsmodus angezeigt wird.

2 Für die Menüelemente b-Lit, APF, rEF und d-LoG kann der Benutzer die Zahl anpassen, indem er auf diese Taste drückt:

3 Diese Menüoption ist nur für das U1252B verfügbar.

4 Um das Menüelement tEMP anzuzeigen, drücken Sie Dianger als 1 Sekunde.

Einstellung von Datenhaltemodus/Modus "Halten aktualisieren"

- 1 Stellen Sie OFF ein, um den Datenhaltemodus zu aktivieren (manueller Auslöser durch Taste oder Bus per Fernsteuerung).
- 2 Stellen Sie den Änderungszähler im Bereich von 100~1000 ein, um den Modus "Halten Aktualisieren" zu aktivieren (automatischer Auslöser). Wenn die Änderung von Messwerten die Einstellung des Änderungszählers übersteigt, ist "Halten aktualisieren" auslösebereit.

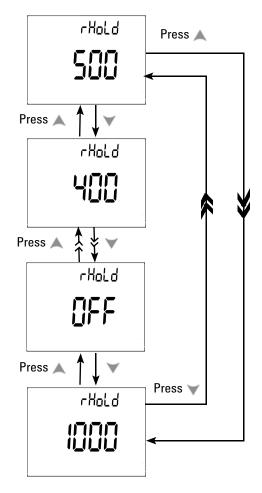


Abbildung 4-1 Einrichtung von Daten halten/Halten aktualisieren

Einstellung des Datenprotokollierungsmodus

- 1 Stellen Sie "Hand" ein, um den manuellen Datenprotokollierungsmodus zu aktivieren.
- **2** Legen Sie das Intervall im Bereich von 0001~9999 Sekunden fest, um den (automatischen) Intervall-Datenprotokollierungsmodus zu aktivieren.
- 3 Drücken Sie oder länger als 1 Sekunde, um zwischen der Einrichtung von manueller und Intervall-Datenprotokollierung zu wechseln.

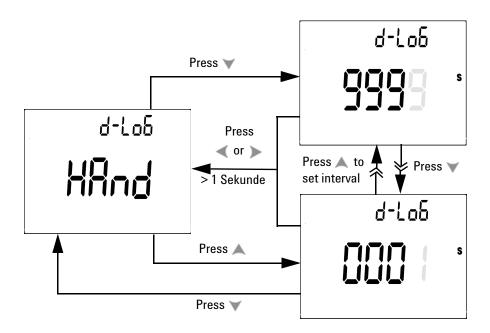
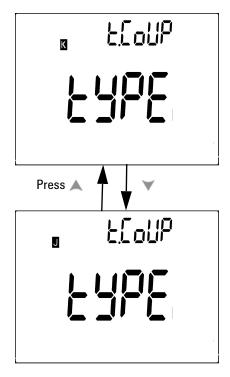



Abbildung 4-2 Einrichtung der Datenprotokollierung

Einstellung der Thermoelementtypen (nur für U1252B)

Die Thermoelementsensor-Typen können unter den K- (Standard) oder J-Typen ausgewählt werden. Standardtyp ist der K-Typ. Drücken Sie \blacktriangle oder \blacktriangledown , um zwischen J- und K-Typ zu wechseln.

Abbildung 4-3 Einrichtung des Thermoelementtyps

Einstellung der Referenzimpedanz für dBm-Messung

Die Referenzimpedanz kann im Bereich von 1 bis 9999 W eingestellt werden. Der Standardwert ist 50 W.

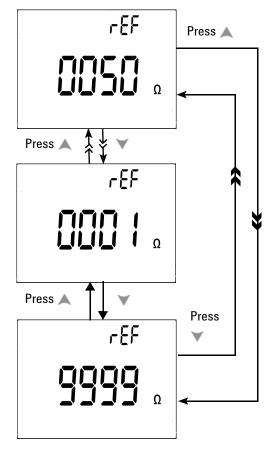


Abbildung 4-4 Einrichtung der Referenzimpedanz für dBm-Messung

Einstellung der Mindestfrequenzmessung

Die Einrichtung der Mindestfrequenzmessung beeinflusst die Messraten für Frequenz, Arbeitszyklus und Impulsbreite. Die typische Messrate basiert auf der Mindestfrequenz von 1 Hz.

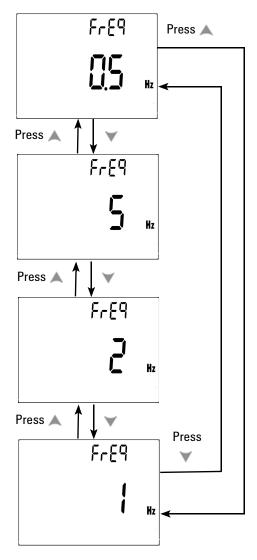


Abbildung 4-5 Einrichtung der Mindestfrequenz

Einstellung der Temperatureinheit

Vier Kombinationsanzeigen sind verfügbar:

- Einzelanzeige nur für Celsius (°C auf Primäranzeige)
- Kombinationsanzeige für Celsius-Fahrenheit (d-CF) und Fahrenheit-Celsius (d-FC).

HINWEIS

Wechsel zwischen Primäranzeige und Sekundäranzeige ist möglich durch Drücken von Range .

• Einzelanzeige nur für Fahrenheit (°F auf Primäranzeige).

4 Ändern der Standardwerkseinstellung

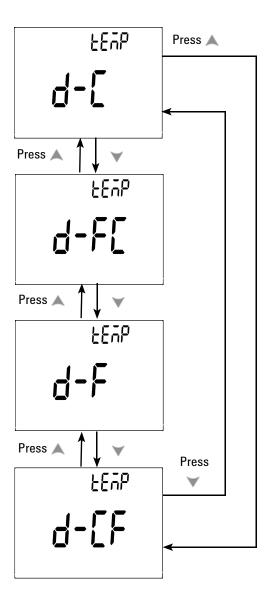


Abbildung 4-6 Einrichten der Temperatureinheit

Einstellung des automatischen Energiesparmodus

- Der Timer für APF (Auto Power OFF) kann im Bereich von 1~99 Minuten eingestellt werden.
- Um das Messgerät nach der automatischen Abschaltung zu aktivieren, drehen Sie den Drehregler in die Position OFF. Drehen Sie ihn anschließend wieder zurück.

AutoOFF Während nachfolgenden Messungen wird angezeigt.

4 Ändern der Standardwerkseinstellung

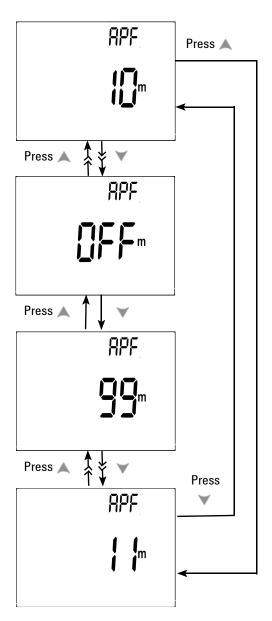


Abbildung 4-7 Einrichtung des automatischen Energiesparmodus

Einstellung der %-Skalenausgabe

Diese Einstellung konvertiert die Anzeige der DC-Stromstärkenmessung in eine %-Skalenausgabe – 4-20 mA oder 0-20 mA proportional zu 0~100%. Die 25 %-Skalenausgabe stellt den Gleichstrom 8 mA bei 4 – 20 mA und den Gleichstrom 5 mA bei 0 – 20 mA dar.

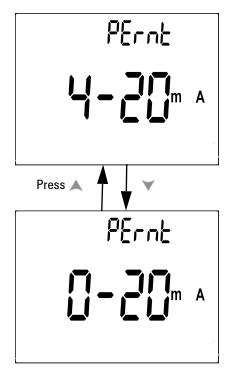


Abbildung 4-8 Einrichtung der %-Skalenausgabe

Einstellung der Signaltonfrequenz

Die Signaltonfrequenz kann auf 2400, 1200, 600 oder 300 Hz eingestellt werden. "OFF" deaktiviert den Signalton.

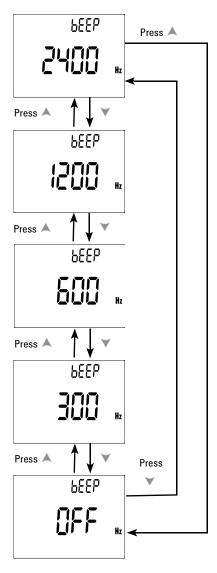
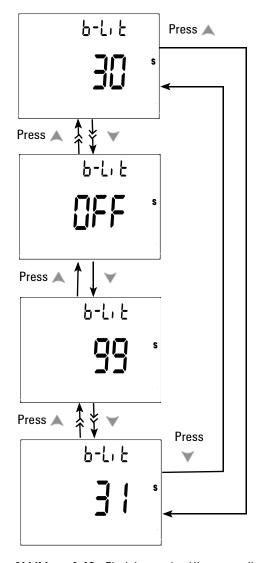



Abbildung 4-9 Einrichtung der Signaltonfrequenz

Einstellung des Hintergrundbeleuchtungs-Timers

- Der Timer kann im Bereich von 1~99 Sekunden eingestellt werden. Die Hintergrundbeleuchtung wird nach dem eingestellten Zeitraum automatisch ausgeschaltet.
- "0FF" deaktiviert das autom. Ausschalten der Beleuchtung.

Abbildung 4-10 Einrichtung des Hintergrundbeleuchtungs-Timers

Einstellung der Baudrate

Die Baudrate wird für die Fernsteuerung gewählt. Verfügbare Einstellungen sind 2400, 4800, 9600 und 19200 Hz.

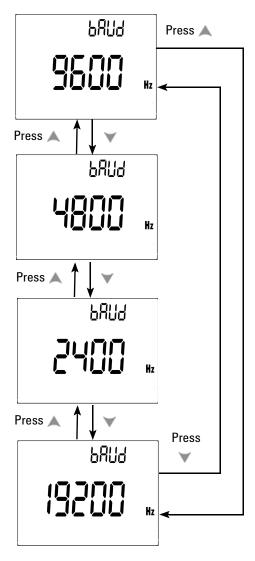


Abbildung 4-11 Einrichtung der Baudrate für die Fernsteuerung

Einstellung der Paritätsprüfung

Die Paritätsprüfung wird für die Fernsteuerung gewählt. Mögliche Einstellungen sind kein, gerades oder ungerades Bit.

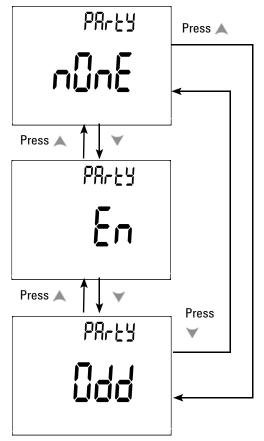


Abbildung 4-12 Einrichtung der Paritätsprüfung

Einstellung des Datenbits

Das Datenbit wird für die Fernsteuerung gewählt. Es kann auf 8 oder 7 Bit eingestellt werden.

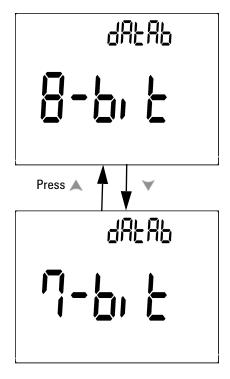


Abbildung 4-13 Einrichtung des Datenbits für die Fernsteuerung

Einstellung des Echomodus

- Echo ON aktiviert die Rückgabe von Zeichen an den PC bei der Remotekommunikation.
- Echo OFF deaktiviert den Echomodus.

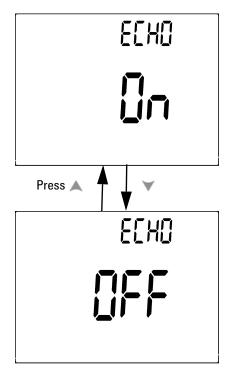


Abbildung 4-14 Einrichtung des Echomodus für die Fernsteuerung

Einstellung des Druckmodus

"Print ON" ermöglicht das Ausdrucken gemessener Daten auf dem PC nach Abschluss des Messzyklus. In diesem Modus sendet das Messgerät automatisch fortlaufend die neuesten Daten an den Host, akzeptiert von ihm jedoch keine Befehle.

Remote blinkt während des Druckvorgangs.

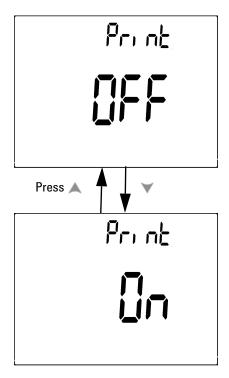


Abbildung 4-15 Einrichtung des Druckmodus für die Fernsteuerung

Rücksetzen auf die Standardwerkseinstellungen

- Drücken Sie Hz länger als 1 Sekunde, um das Gerät mit Ausnahme der Temperatureinstellung auf die Standardwerkseinstellungen zurückzusetzen.
- Nach der Rücksetzung folgt automatisch der Wechsel vom Menüelement Reset zum Menüelement Refresh Hold.

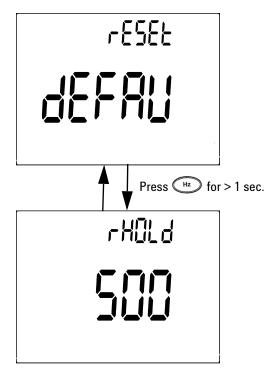


Abbildung 4-16 Einrichtung des Rücksetzens

Einstellen der Batteriespannung

Für das Multimeter kann der Batterietyp 7,2 V oder 8,4 V eingestellt werden.

Abbildung 4-17 Batteriespannungswahl

Einstellen des DC-Filters

Diese Einstellung wird im DC-Messpfad zur AC-Signal-Filterung verwendet. Der DC-Filter ist standardmäßig auf "OFF" gesetzt. Um diese Funktion zu aktivieren, setzen Sie diese auf "ON".

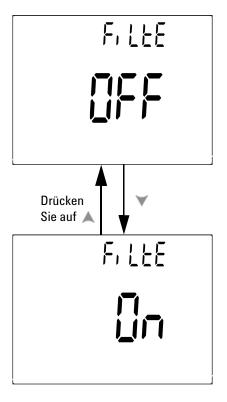
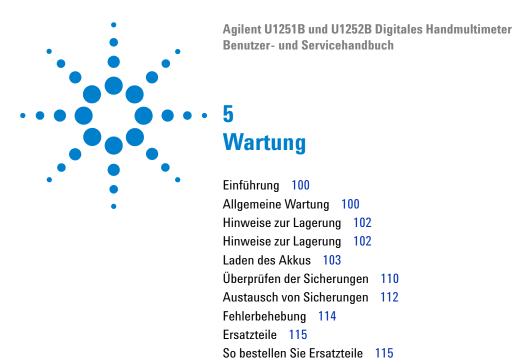



Abbildung 4-18 DC-Filter

HINWEIS

- Wenn der DC-Filter aktiviert ist, kann die Messgeschwindigkeit während der DC-Spannungsmessung abfallen.
- Während der DC- oder Hz-Messung (auf der Primär- oder Sekundäranzeige) wird der DC-Filter automatisch deaktiviert.

Ändern der Standardwerkseinstellung

In diesem Kapitel wird die Vorgehensweise zur Behebung von Problemen beim digitalen Handmultimeter beschrieben.

Einführung

VORISCHT

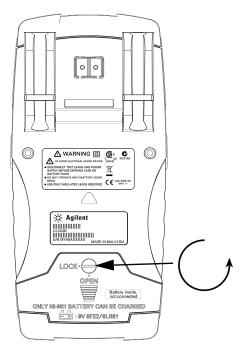
Reparatur- oder Servicemaßnahmen, die in diesem Handbuch nicht erwähnt werden, sind nur von qualifiziertem Personal durchführbar.

Allgemeine Wartung

WARNUNG

Stellen Sie vor jeder Messung sicher, dass Sie die richtigen Anschlüsse verwenden. Um eine Beschädigung des Geräts zu vermeiden, überschreiten Sie nicht die Eingangsbeschränkung.

Von dieser Gefahr abgesehen kann Schmutz oder Feuchtigkeit in den Anschlüssen die Messwerte verzerren. Gehen Sie zur Reinigung wie folgt vor:


- 1 Schalten Sie das Messgerät aus, und entfernen Sie die Messleitungen.
- 2 Drehen Sie das Messgerät um, und schütteln Sie den Schmutz heraus, der sich eventuell in den Anschlüssen angesammelt hat.
- 3 Wischen Sie das Gehäuse mit einem feuchten Tuch und einem milden Reinigungsmittel ab – verwenden Sie keine Scheuer- oder Lösungsmittel. Reinigen Sie die Kontakte jedes Anschlusses mit einem sauberen, alkoholgetränkten Wattetupfer.

Akku-/Batterieaustausch

Das Messgerät wird mit einem aufladbaren Ni-MH-Akku mit 9 V (7,2 V Nennspannung) betrieben. Verwenden Sie nur den entsprechenden Typ (siehe Abbildung 5-1). Damit dies gewährleistet ist, sollte die Batterie sofort ersetzt werden, wenn das Zeichen für niedrigen Batterieladestatus blinkt. Wenn Sie für Ihr Multimeter einen aufladbaren Akku verwenden, finden Sie weitere Informationen unter "Laden des Akkus" auf Seite 103.

Der Batterieaustausch erfolgt wie folgt:

1 Lösen Sie am hinteren Bedienfeld die Schraube der Batteriefachabdeckung von der Position LOCK zu OPEN (entgegen dem Uhrzeigersinn).

- 2 Schieben Sie die Batteriefachabdeckung nach unten.
- 3 Heben Sie die Batteriefachabdeckung ab.
- 4 Tauschen Sie die Batterie aus.
- **5** Führen Sie die Schritte in umgekehrter Reihenfolge aus, um die Abdeckung wieder anzubringen.

<u>HINW</u>EIS

Liste der kompatiblen Batterien für das Agilent U1251B:

- Nicht aufladbare 9-V-Alkaline-Batterie (ANSI/NEDA 1604A oder IEC 6LR61)
- Nicht aufladbare 9-V-Zink-Kohle-Batterie (ANSI/NEDA 1604D oder IEC6F22)

HINWEIS

Liste der kompatiblen Batterien für das Agilent U1252B:

- Aufladbarer Ni-MH-Akku mit 7,2 V und 300 mAH, Größe 9V
- Aufladbarer Ni-MH-Akku mit 8.4 V und 300 mAH, Größe 9V
- Nicht aufladbare 9-V-Alkaline-Batterie (ANSI/NEDA 1604A oder IEC 6LR61)
- Nicht aufladbare 9-V-Zink-Kohle-Batterie (ANSI/NEDA 1604D oder IEC6F22)

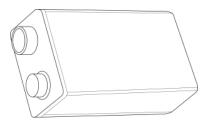


Abbildung 5-1 Rechteckige Batterie mit 9 V

Hinweise zur Lagerung

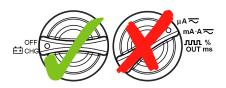
VORISCHT

So vermeiden Sie Beschädigungen durch auslaufende Batterien:

- · Entfernen Sie verbrauchte Batterien grundsätzlich sofort.
- Es wird empfohlen, die Batterie aus dem Multimeter zu nehmen und diese separat zu lagern, wenn das Gerät längere Zeit nicht verwendet wird.

Nach dem ersten Ladevorgang sollte der Akku regelmäßig vollständig aufgeladen werden, auch wenn diese nicht verwendet wird. Anderenfalls besteht die Möglichkeit, dass der aufladbare Ni-MH-Akku nach einiger Zeit ausläuft.

HINWEIS


Die Leistungsfähigkeit des aufladbaren Akkus kann im Laufe der Zeit abnehmen.

Laden des Akkus

WARNUNG

Entladen Sie die Batterie niemals durch Kurzschluss oder Polaritätsumkehrung. Laden Sie nur Akkus auf, keine Batterien. Drehen Sie niemals den Drehregler während des Ladens, da DC 24 V an den Ladeanschlüssen anliegen.

VORISCHT

- Drehen Sie den Drehregler während des Ladens des Akkus nicht aus der Position OFF .

 ☐ CHG
- Führen Sie den Ladevorgang nur mit einem aufladbaren Ni-MH-Akku mit 9 V (7,2 V Nennspannung) oder aufladbaren Ni-MH-Akku mit 9 V (8,4 V Nennspannung) durch.
- Trennen Sie alle Testleitungen während des Ladevorgangs von den Anschlüssen.
- Stellen Sie sicher, dass der Akku ordnungsgemäß in das Multimeter eingelegt wird, und achten Sie auf die richtige Polarität.

HINWEIS

Für das Akkuladegerät dürfen die Schwankungen der Netzspannung +/- 10% nicht überschreiten.

Ein neuer Akku ist nicht geladen und muss vor der Verwendung aufgeladen werden. Vor der ersten Verwendung (oder nach längerer Lagerung des Geräts) muss der Akku möglicherweise dreibis viermal geladen und wieder entladen werden, bis die maximale Kapazität erreicht wird. Zum Entladen betreiben Sie das Multimeter einfach mit dem Akku, bis es sich ausschaltet oder die Warnung zum niedrigen Akkuladestand angezeigt wird.

5 Wartung

Verwenden Sie zum Laden des Akkus den angegebenen 24-V-DC-Adapter. Achten Sie darauf, dass das Multimeter über den Drehregler nie ausgeschaltet ist, während der Akku geladen wird. Laden Sie den Akku wie folgt:

- 1 Entfernen Sie die Messleitungen von dem Messgerät.
- 2 Drehen Sie den Drehregler in die Position GFF Gen Sie das Netzkabel an den DC-Adapter an.
- 3 Verbinden Sie den roten (+)/schwarzen (-) Bananenstecker des DC-Adapters mit den Anschlüssen ETCHG und "COM". Der DC-Adapter kann gegen ein DC-Netzteil ausgetauscht werden, um einen Ausgang von DC 24 V und die Überstrombegrenzung auf <0,5A festzulegen. Achten Sie auf richtige Polarität.
- 4 Auf der Primäranzeige wird "bAt" und auf der Sekundäranzeige wird "SbY" angezeigt und ein kurzer Ton wird ausgegeben, um Sie daran zu erinnern, den Akku aufzuladen. Drücken Sie die SHIFT-Taste, um das Laden des Akkus zu starten, oder das Messgerät startet nach Anwendung der 24-V-Versorgung automatisch den Selbsttest. Laden Sie den Akku nicht, wenn seine Kapazität über 90% liegt.

 Tabelle 5-1
 Akkuspannung und entsprechende Prozentangabe des Ladevorgangs im Standby- und Auflademodus.

Bedingung	Akkuspannung	Prozentsatz proportional
Auffrischen (SBY)	6,0 V ~ 8,2 W	0% ~ 100%
Unterladung	7,2 V ~ 10,0 W	0% ~ 100%

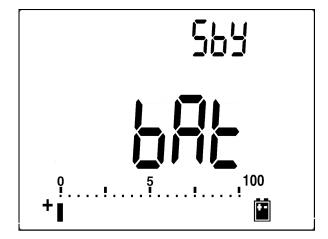


Abbildung 5-2 Akkukapazitätsanzeige beim Auffrischen

5 Nach Drücken der SHIFT- oder Selbststarttaste führt das Messgerät einen Selbsttest durch, um zu prüfen, ob es einen Akku oder eine Batterie enthält. Der Selbsttest dauert etwa 2-3 Minuten. Betätigen Sie während des Selbsttests keine Tasten. Eine Meldung wie in Abbildung 5-3 wird angezeigt.

5 Wartung

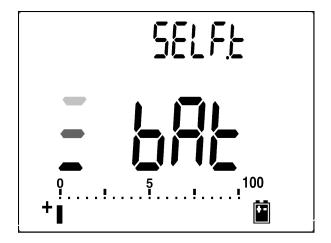
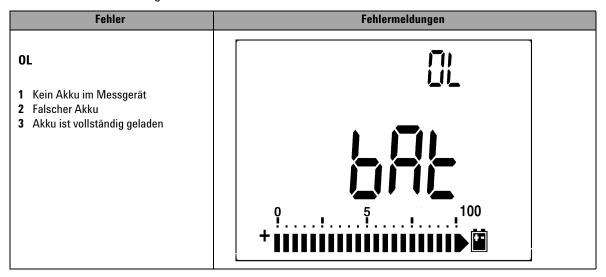



Abbildung 5-3 Selbsttest

Tabelle 5-2 Fehlermeldungen

Tabelle 5-2 Fehlermeldungen (Fortsetzung)

Fehler	Fehlermeldungen	
C-Err 1 Beim Laden des Akkus mit mehr als 12 V oder weniger als 5 V	[-Err	
2 Nach 3 Minuten wird Ladefehler angezeigt, wenn Akkuspannung nicht ansteigt.	9	

HINWEIS

- Wird die Meldung **OL** bei eingelegtem Akku angezeigt, laden Sie den Akku nicht auf.
- Wird die Meldung C-Err angezeigt, pr
 üfen Sie, ob der Akku den Spezifikationen entspricht. Die Akkuspezifikationen sind in diesem Handbuch angegeben. Bitte stellen Sie sicher, dass der Akku den Spezifikationen entspricht, bevor Sie ihn erneut laden. Dr
 ücken Sie nach Austausch durch einen geeigneten Akku die Taste Shift, um den Selbsttest erneut durchzuf
 ühren. Setzen Sie einen neuen Akku ein, falls die Bedingung C-Err angezeigt wird.
- 6 Nach erfolgreichem Selbsttest wird der intelligente Lademodus gestartet. Die Ladezeit ist auf 220 Minuten begrenzt. Der Akku wird also nicht länger als 220 Minuten geladen. Auf der Sekundäranzeige wird die Ladezeit heruntergezählt. Während des Ladevorgangs können keine Tasten betätigt werden. Die Fehlermeldung wird möglicherweise während des Ladevorgangs angezeigt, um den Benutzer vor dem Überladen des Akkus zu warnen.

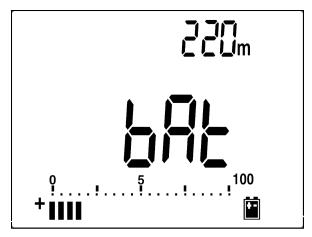


Abbildung 5-4 Lademodus

- 7 Die Ladungsendemeldung (C-End) wird nach Abschluss des Ladens auf der Sekundäranzeige angezeigt. Mithilfe des Auffrischladestroms wird die Akkuladung erhalten. Die blinkenden Zeichen 1 und 1 zeigen den Auffrischstatus an.
- 8 Entfernen Sie den DC-Adapter, wenn C-End auf der Sekundäranzeige angezeigt wird. Drehen Sie den Drehregler nicht, bevor Sie den Adapter von den Anschlüssen entfernt haben.

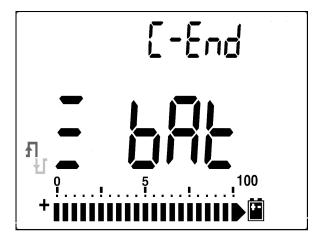


Abbildung 5-5 Ladungsende und Auffrischstatus

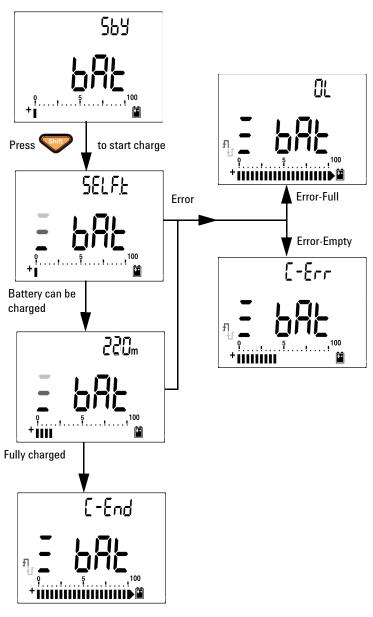


Abbildung 5-6 Laden des Akkus

Überprüfen der Sicherungen

Es wird empfohlen, vor der Verwendung die Sicherungen des Multimeters zu überprüfen. Folgen Sie den nachfolgenden Anweisungen, um die Sicherungen im Multimeter zu testen. Die jeweilige Position von Sicherung 1 und Sicherung 2 ist in Abbildung 5-8 dargestellt.

- 1 Stellen Sie den Drehregler auf $\underset{\Omega}{\text{nS}}$ ein.s
- 2 Schließen Sie die rote Testleitung am Eingangsanschluss

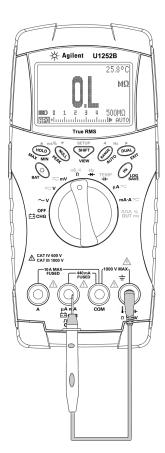


Abbildung 5-7 Überprüfen der Sicherungen

3 Zum Testen von Sicherung 1 legen Sie die Spitze der

Testsonde an der rechten Hälfte des Eingangsanschlusses $\mu A \cdot mA$

Eiche an. Stellen Sie sicher, dass die Sondenspitze

das Metall in der Eingangsbuchse berührt, wie in der Abbildung gezeigt.

- 4 Zum Testen von Sicherung 2 legen Sie die Spitze der Testsonde an der rechten Hälfte des Eingangsanschlusses
 A an. Stellen Sie sicher, dass die Sondenspitze das Metall in der Eingangsbuchse berührt.
- **5** Beobachten Sie die auf dem Instrument angezeigten Werte. (Siehe unten Tabelle 5-3 für mögliche Messwerte, die angezeigt werden könnten.)
- 6 Tauschen Sie die Sicherung aus, wenn **0L** angezeigt wird.

Tabelle 5-3 Messwerte für die Überprüfung der Sicherung

Aktuallar Eingang	Ciahamma	Ciahawungawawt	Sicherung OK (ungefähr)	Sicherung ersetzen
Aktueller Eingang	Sicherung	Sicherungswert	Angezeigte Messwerte	
μ A ·mA	1	440 mA/1000 V	6,2 M Ω	OL
A	2	11 A/1000 V	0,06 Ω	OL

Austausch von Sicherungen

HINWEIS

In diesem Handbuch wird nur der Sicherungsaustausch beschrieben, jedoch nicht die Sicherungsaustauschkennzeichnung.

Gehen Sie beim Austausch der Sicherung des Messgeräts wie folgt vor:

- 1 Schalten Sie das Messgerät aus, und entfernen Sie die Messleitungen von externen Geräten. Achten Sie darauf, dass der Adapter entfernt ist.
- 2 Tragen Sie saubere/trockene Handschuhe, und berühren Sie keine Komponenten außer Sicherung und Kunststoffteilen. Die Stromkalibrierung ist nur als Nebenschluss gedacht, sodass die Neukalibrierung des Messgeräts nach Austausch der Sicherung nicht empfohlen wird.
- **3** Entfernen Sie die Batteriefachabdeckung, um die Sicherung auszutauschen.
- **4** Lösen Sie die drei Schrauben am Gehäuseboden und nehmen Sie die Abdeckung ab.
- **5** Lösen Sie zwei Schrauben an den oberen Ecken, um die Platine abheben zu können.
- **6** Entfernen Sie vorsichtig die defekte Sicherung, indem Sie ein Ende der Sicherung herausdrücken und sie aus der Sicherungsklammer nehmen.
- 7 Setzen Sie eine neue Sicherung von derselben Größe und demselben Nennwert ein. Achten Sie darauf, dass die neue Sicherung im Sicherungshalter zentriert ist.
- **8** Stellen Sie sicher, dass der Drehregler auf der Gehäuseoberseite und der Platinenschalter in der Position OFF sind.
- **9** Bringen Sie die Platine und die Bodenabdeckung wieder an.
- **10** Entnehmen Sie der nachstehenden Tabelle Teilenummer, Nennwert und Größe der Sicherungen.

 Tabelle 5-4
 Spezifikationen der Sicherungen

Sicherung	Agilent-Teilenummer	Nennwert	Größe	Тур
1	2110-1400	440mA/1000V	10 mm x 35 mm	Schnell schmelzende
2	2110-1402	11A/1000V	10 mm x 38 mm	Sicherung

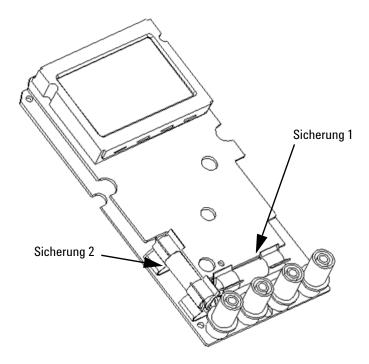


Abbildung 5-8 Sicherungsaustausch

Fehlerbehebung

WARNUNG

Um einen möglichen Stromschlag zu vermeiden, sollten Sie Servicemaßnahmen am Gerät nur dann durchführen, wenn Sie dafür qualifiziert sind.

Wenn das Instrument nicht funktioniert, prüfen Sie Akku und Messleitungen. Ggf. austauschen. Wenn das Instrument immer noch nicht funktioniert, überprüfen Sie die Bedienungsweise in diesem Handbuch. Verwenden Sie für Servicearbeiten nur angegebene Ersatzteile. Mithilfe der nachfolgenden Tabelle 5-5 können Sie einige grundlegenden Probleme und deren Lösungen identifizieren.

Tabelle 5-5 Verfahren zur grundlegenden Problembehebung

Fehlfunktion	Problembehebung
Keine LCD-Anzeige nach Einschalten	Batterie prüfen. Batterie austauschen bzw. Akku laden.
Kein Signalton.	Einrichtungsmodus prüfen, und feststellen, ob der Signalton auf OFF geschaltet ist. Dann gewünschte Frequenz wählen.
Fehler bei Stromstärkemessung	Sicherung prüfen.
Keine Ladungsanzeige [1]	 440 mA-Sicherung prüfen. Bei externem Adapter prüfen, ob die Ausgabe DC 24 V entspricht, und auf richtigen Anschluss an Ladeanschlüsse achten. Netzleitungsspannung (100 V~240 V AC 50 Hz/ 60 Hz).
Lebensdauer des Akkus ist sehr kurz nach vollständigem Laden/Akku kann nach längerer Lagerzeit nicht geladen werden	 Prüfen, ob der richtige aufladbare Akku verwendet wird. Versuchen, den Akku zwei- bis dreimal zu laden und zu entladen, um die größtmögliche Akkukapazität zu erreichen. HINWEIS: Die Leistungsfähigkeit des aufladbaren Akkus kann im Laufe der Zeit abnehmen.
Fehler bei Fernsteuerung	 Optische Seite des Kabels angeschlossen an Messgerät, Textseite der Abdeckung sollte nach oben weisen. Baudrate, Parität, Datenbit, Stoppbit prüfen (Standard ist 9600, n, 8, 1) Treiberinstallation für IR – USB.

Hinweise zur Tabelle mit Verfahren zur grundlegenden Problembehebung:

1 Drehen Sie den Drehregler des Multimeters nie auf die Position OFF, während der Akku geladen wird.

Ersatzteile

In diesem Abschnitt finden Sie Informationen zum Bestellen der Ersatzteile für Ihr Instrument. Sie finden die Liste der Instrument-Supportteile im Messtechnik-Teilekatalog von Agilent unter http://www.agilent.com/find/parts

Die Teilelisten umfassen eine kurze Beschreibung für jedes Teil sowie die entsprechende Agilent Teilenummer.

So bestellen Sie Ersatzteile

Ersatzteile können über die Agilent Teilenummer bei Agilent bestellt werden. Beachten Sie, dass nicht alle aufgelisteten Teile als vor Ort austauschbare Teile verfügbar sind.

Gehen Sie bei der Ersatzteilbestellung bei Agilent wie folgt vor:

- Wenden Sie sich an das Agilent Vertriebsbüro oder Servicecenter in Ihrer N\u00e4he.
- **2** Weisen Sie die Teile mit der Agilent Teilenummer der Supportteileliste aus.
- 3 Geben Sie Modell- und Seriennummer des Instruments an.

5 Wartung

6

Leistungstests und Kalibrierung

```
Kalibrierungsübersicht 118
 Elektronische Kalibrierung bei geschlossenem Gehäuse 118
 Agilent Technologies Kalibrierungsservice 118
 Kalibrierungsintervall 119
 Einstellung wird empfohlen 119
Empfohlene Testausrüstung 120
Basisbetriebstest 121
 Hintergrundbeleuchtungstest 121
 Testen der Anzeige 121
 Stromanschlusstest 122
 Test der Ladeanschlusswarnung 123
Überlegungen zum Test 124
Kalibrierungssicherheit 125
Leistungsüberprüfungstests 126
 Entsichern des Instruments zur Kalibrierung 134
Kalibrierungsprozess 137
 Verwendung des vorderen Bedienfelds für Einstellungen 138
Überlegungen zu Einstellungen 139
 Gültige Einstellungseingabewerte 140
 Einstellungsverfahren 141
 Beenden der Einstellung 148
 So lesen Sie die Kalibrierungszahl 148
 Kalibrierungsfehler 149
```

In diesem Kapitel werden Leistungstest- und Einstellungsverfahren erläutert.

Kalibrierungsübersicht

Dieses Handbuch enthält Verfahren zur Überprüfung von Leistung und Einstellung (Kalibrierung) des Instruments.

Mit den Leistungstestverfahren können Sie prüfen, ob das digitale Handmultimeter den angegebenen Spezifikationen gerecht wird. Mit dem Einstellungsverfahren wird sichergestellt, dass das Multimeter bis zur nächsten Kalibrierung innerhalb seiner Spezifikationen bleibt.

HINWEIS

Lesen Sie vor Kalibrierung des Instruments "Überlegungen zum Test" auf Seite 124.

Elektronische Kalibrierung bei geschlossenem Gehäuse

Bei diesem Instrument wird die Kalibrierung elektronisch bei geschlossenem Gehäuse vorgenommen. Interne mechanische Einstellungen sind nicht erforderlich. Das Instrument berechnet Korrekturfaktoren auf der Basis Ihrer Eingabereferenzwerte. Die neuen Korrekturfaktoren werden im permanenten Speicher aufbewahrt, bis die nächste Kalibrierungseinstellung durchgeführt wird. Der Inhalt des permanenten EEPROM-Kalibrierungsspeichers geht nicht verloren, selbst wenn das Gerät ausgeschaltet ist.

Agilent Technologies Kalibrierungsservice

Wenn Ihr Instrument kalibriert werden muss, fragen Sie bei Ihrem Agilent Servicecenter nach einem Angebot für die Neukalibrierung.

Kalibrierungsintervall

Für die meisten Anwendungen reicht ein einjähriges Intervall aus. Garantie für Genauigkeitsspezifikationen wird nur übernommen, falls die Einstellung in regulären Kalibrierungsintervallen stattfindet. Garantie für Genauigkeitsspezifikationen wird nicht übernommen, wenn das einjährige Kalibrierungsintervall nicht eingehalten wird. Agilent empfiehlt, für keine Anwendung das Kalibrierungsintervall auf mehr als 2 Jahre auszudehnen.

Einstellung wird empfohlen

Spezifikationen werden nur innerhalb der nach der letzten Einstellung beginnenden Periode garantiert. Agilent empfiehlt, die erneute Einstellung während der leistungsoptimierenden Kalibrierung durchzuführen. So bleibt das U1251B/U1252B im Rahmen der Spezifikationen. Diese Kriterien für die Neueinstellung bieten die beste Langzeitstabilität.

Leistungsdaten werden während der Leistungsüberprüfungstests gemessen, und dies garantiert nicht, dass das Instrument innerhalb dieser Begrenzungen bleibt, sofern keine Einstellungen vorgenommen.

Lesen Sie "So lesen Sie die Kalibrierungszahl" auf Seite 148, und überprüfen Sie, ob alle Einstellungen durchgeführt wurden.

Empfohlene Testausrüstung

Die empfohlene Testausrüstung für Leistungsüberprüfung und Einstellungsverfahren ist nachstehend aufgeführt. Falls das empfohlene Instrument nicht verfügbar ist, verwenden Sie Kalibrierungsstandards von gleicher Genauigkeit.

Als alternative Methode wird die Verwendung des digitalen Multimeters Agilent 3458A $8\frac{1}{2}$ – Digit zum Messen weniger genauer, jedoch stabiler Quellen vorgeschlagen. Der gemessene Ausgangswert der Quelle kann als Zielkalibrierungswert in das Instrument eingegeben werden.

Tabelle 6-1 Empfohlene Testausrüstung

Anwendung	Empfohlene Ausrüstung	Empfohlene Genauigkeitsvoraussetzungen
DC-Spannung	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
DC-Stromstärke	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
Widerstand	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
AC-Spannung	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
AC-Stromstärke	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
Frequenz	Agilent 33250A	<1/5 Instrument 1 Jahr Spez
Kapazität	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
Arbeitszyklus	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
Nanosiemens	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
Diode	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
Frequenzzähler	Agilent 33250A	<1/5 Instrument 1 Jahr Spez
Temperatur	Fluke 5520A	<1/5 Instrument 1 Jahr Spez
Rechteckwelle	Agilent 53131A und Agilent 34401A	<1/5 Instrument 1 Jahr Spez
Kurzschließen	Kurzschlussstecker — Doppelbananenstecker mit Kupferdraht zum Kurzschließen von zwei Anschlüssen	-

Basisbetriebstest

Mit dem Basisbetriebstest wird die grundsätzliche Betriebsfähigkeit des Instruments getestet. Reparatur ist erforderlich, wenn das Instrument den Basisbetriebstest nicht besteht.

Hintergrundbeleuchtungstest

Drücken Sie die Taste Bat zum Testen der Hintergrundbeleuchtung. Augenblicklich wird die Hintergrundbeleuchtung EINund AUS-geschaltet.

Testen der Anzeige

Drücken Sie die Taste **Hold**, und schalten Sie das Messgerät ein, um alle Segmente der Anzeige anzuzeigen. Vergleichen Sie die Anzeige mit dem Beispiel in Tabelle 6-1.

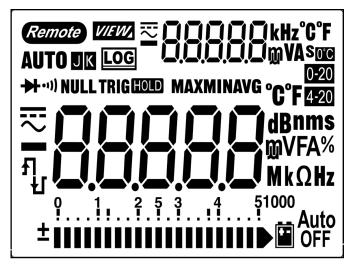


Abbildung 6-1 LCD-Anzeige

Stromanschlusstest

Dieser Test bestimmt, ob die Eingangswarnung des Stromanschlusstests richtig funktioniert.

Das Messgerät gibt einen Alarmton aus, wenn die Testleitung an Anschluss A angeschlossen wird, aber der Drehregler nicht auf die Funktion mA.A gesetzt ist. Die Primäranzeige zeigt "A-Err" an. Dies wird in Abbildung 6-2 gezeigt. Die Primäranzeige blinkt, bis die Testleitung von Anschluss A entfernt wird.

HINWEIS

Stellen Sie vor Durchführung dieses Tests sicher, dass der Signalton nicht im Setup deaktiviert ist.

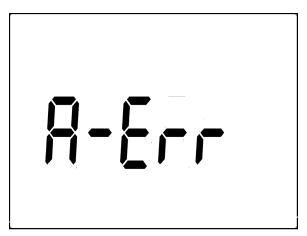


Abbildung 6-2 Eingangswarnung

Test der Ladeanschlusswarnung

entfernt wird.

Dieser Test bestimmt, ob der Ladeanschluss-Alarm richtig funktioniert.

Das Messgerät gibt einen Alarmton aus, wenn am Anschluss

OFF

☐ CHG ein Spannungsniveau von mehr als 5 V erkannt wird,

OFF

der Drehregler jedoch nicht in die Position ☐ CHG gesetzt ist.

Das Messgerät gibt einen Alarmton aus, und auf der Primäranzeige blinkt "Ch.Err", bis die Testleitung von Anschluss ☐ CHG

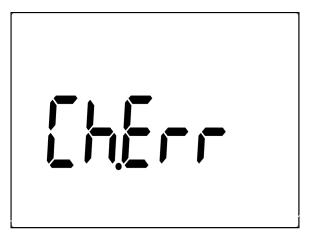


Abbildung 6-3 Ladeanschluss-Alarm

HINWEIS

Stellen Sie vor Durchführung dieses Tests sicher, dass der Signalton nicht im Setup deaktiviert ist.

Überlegungen zum Test

Lange Testleitungen können auch als Antenne wirken und so AC-Signale aufnehmen.

Für optimale Leistung sollten alle Verfahren folgenden Empfehlungen entsprechen:

- Stellen Sie sicher, dass die Umgebungstemperatur während der Kalibrierung zwischen 18 °C und 28 °C stabil bleibt. Sie sollte idealerweise bei 23 °C ± 1 °C durchgeführt werden.
- Stellen Sie sicher, dass die relative Luftfeuchtigkeit in der Umgebung weniger als 80% beträgt.
- Halten Sie eine Aufwärmphase von fünf Minuten für das Gerät ein.
- Reduzieren Sie Settling- und Rauschfehler durch Verwendung von abgeschirmten, PTFE-isolierten Twisted Pair-Kabeln. Halten Sie die Eingangskabel so kurz wie möglich.

Kalibrierungssicherheit

Der Kalibrierungssicherheitscode verhindert versehentliche oder unberechtigte Einstellungen des Instruments. Wenn Sie das Instrument erhalten, ist es gesichert. Bevor Sie das Instrument einstellen können, müssen Sie es durch Eingabe des richtigen Sicherheitscodes entsichern (siehe "Entsichern des Instruments zur Kalibrierung" auf Seite 134).

Der Sicherheitscode ist bei Auslieferung des Instruments auf 1234 eingestellt. Der Sicherheitscode wird im permanenten Speicher gespeichert und ändert sich nach dem Ausschalten nicht.

Der Sicherheitscode kann bis zu 4 nummerische Zeichen enthalten.

HINWEIS

Sie können das Instrument am vorderen Bedienfeld entsichern. Der Sicherheitscode kann nach Entsichern des Instruments nur über das vordere Bedienfeld geändert werden.

Siehe "So entsichern Sie das Instrument ohne Sicherheitscode" auf Seite 136, wenn Sie Ihren Sicherheitscode vergessen haben.

Leistungsüberprüfungstests

Verwenden Sie die Leistungsüberprüfungstests zur Überprüfung der Messleistung des Instruments. Die Leistungsüberprüfungstests verwenden die im U1251B/U1252B-Datenblatt des Instruments aufgelisteten Spezifikationen.

Die Leistungsüberprüfungstests werden als Akzeptanztests empfohlen, wenn Sie das Instrument erhalten. Die Ergebnisse des Akzeptanztests sollten mit den alljährlich durchgeführten Tests verglichen werden. Führen Sie die Leistungsüberprüfungstests nach der Akzeptanz zu jedem Kalibrierungsintervall durch.

HINWEIS

Lesen Sie vor Durchführung der Leistungsüberprüfungstests "Überlegungen zum Test" auf Seite 124.

Führen Sie die in der folgenden Tabelle 6-2 durchgeführten Überprüfungstestschritte durch:

 Tabelle 6-2
 Überprüfungstest

Schritt	Prüffunktion	Bereich	Ausgang 5220A	Abweichung vom Nominalwert in 1 Jahr	
			0_01	U1251B	U1252B
1	Drehen Sie den Drehregler in die V position ^[1]	5 V	5 V, 1 kHz	± 32,5 mV	± 22,5 mV
			4,5 V, 10 kHz	± 169,5 mV	± 71,5 mV
			4,5 V, 20 kHz	k. A.	± 169,5 mV
			4,5 V, 30 kHz	± 169,5 mV	k. A.
			4,5 V,100 kHz	k. A.	± 169,5 mV
		50 V	50 V,1 kHz	± 325 mV	± 225 mV
			45 V,10 kHz	± 1,695 V	± 715 mV
			45 V, 20 kHz	k. A.	± 1,695 V
			45 V, 30 kHz	± 1,695 V	k. A.
			45 V, 100 kHz	k. A.	± 1,695 V
		500 V	500 V, 1 kHz	± 3,25 V	± 2,25 V
		1000 V	1000 V, 1 kHz	± 10 V	± 8,0 V
2	Drücken Sie die Taste Hz, um in den Frequenzmodus zu wechseln	9,9999 kHz	0,48 V, 1 kHz	± 500 mHz	± 500 mHz
3	Drücken Sie die Taste (Hz), um in den Arbeitszyklusmodus zu wechseln	0,01% — 99,99%	5,0 Vss bei 50%, Rech- teckwellen, 50 Hz	± 0,315%	± 0,315%

Schritt	Prüffunktion	Bereich	Ausgang 5220A		chung vom vert in 1 Jahr
			022071	U1251B	U1252B
4	Drehen Sie den Drehregler in die Position V (für Modell U1252B), in die Position V (für Modell U1251B)	5 V	5 V	± 2 mV	± 1,75 mV
		50 V	50 V	± 20 mV	± 17,5 mV
		500 V	500 V	± 200 mV	± 200 mV
		1000 V	1000 V	± 800 mV	± 800 mV
5	Drücken Sie die Taste Shift, um	5 V	5 V,1 kHz	k. A.	± 22,5 mV
	in den ~ V -Modus ^[1] zu		5 V, 10 kHz	k. A.	± 79,0 mV
	wechseln		4,5 V, 20 kHz	k. A.	± 169,5 mV
			4,5 V, 100 kHz	k. A.	± 169,5 mV
		50 V	50 V, 1 kHz	k. A.	± 225 mV
			50 V, 10 kHz	k. A.	± 790 mV
			45 V, 20 kHz	k. A.	± 1,695 V
			45 V, 100 kHz	k. A.	± 1,695 V
		500 V	500 V, 1 kHz	k. A.	± 2,25 V
		1000 V	1000 V, 1 kHz	k. A.	± 8,0 V
6	Drehen Sie den Drehregler in die Position mV	50 mV	50 mV	± 75 μV ^[2]	± 75 μV ^[2]
		500 mV	500 mV	± 0,2 mV	± 0,175 mV
			- 500 mV	± 0,2 mV	± 0,175 mV
		1000 mV	1000 mV	± 0,8 mV	± 0,75 mV
			- 1000 mV	± 0,8 mV	± 0,75 mV

Schritt	Prüffunktion	Bereich	Ausgang 5220A		oung vom ert in 1 Jahr
				U1251B	U1252B
7	Drücken Sie die Taste shirt, um in den mV-Modus ^[1] zu wechseln	50 mV	50 mV, 1 kHz	± 0,34 mV	± 0,24 mV
			50 mV, 10 kHz	± 0,86 mV	± 0,415 mV
			45 mV, 20 kHz	k. A.	± 1,695 mV
			50 mV, 30 kHz	± 0,86 mV	k. A.
			45 mV, 100 kHz	k. A.	± 1,695 mV
		500 mV	500 mV, 45 Hz	± 3,25 mV	± 2,25 mV
			500 mV, 1 kHz	± 3,25 mV	± 2,25 mV
			500 mV, 10 kHz	± 8,6 mV	± 4,15 mV
			450 mV, 20 kHz	k. A.	± 16,95 mV
			500 mV, 30 kHz	± 8,6 mV	k. A.
			450 mV, 100 kHz	k. A.	± 16,95 mV
		1000 mV	1000 mV, 1 kHz	± 8,5 mV	± 6,5 mV
			1000 mV, 10 kHz	± 47 mV	± 11,5 mV
			1000 mV, 20 kHz	k. A.	± 11,5 mV
			1000 mV, 30 kHz	± 47mV	k. A.
			1000 mV, 100 kHz	k. A.	± 47,0 mV

6

Schritt	Prüffunktion	Bereich	Ausgang 5220A	Abweich Nominalwe	nung vom ert in 1 Jahr
				U1251B	U1252B
8	Drehen Sie den Drehregler in die Position Ω	500 Ω	500 Ω	$\pm~500~\mathrm{m}\Omega^{[3]}$	\pm 350 m Ω ^[3]
		5 kΩ	5 kΩ	± 4.5 Ω ^[3]	± 3 Ω ^[3]
		50 kΩ	50 kΩ	± 45 Ω	± 30 Ω
		500 kΩ	500 kΩ	± 450 Ω	± 300 Ω
		5 ΜΩ	5 ΜΩ	± 10,5 kΩ	± 8 kΩ
		50 MΩ ^[4]	50 MΩ	± 0,510 MΩ	± 0,505 MΩ
		500 MΩ	450 MΩ	k. A.	± 36,1 MΩ
9	Drücken Sie die Taste Shift, um in den nS-Modus zu wechseln	500 nS ^[5]	50 nS	± 0,7 nS	± 0,6 nS
10	Drehen Sie den Drehregler in die Position Hz/ —>———————————————————————————————————	Diode	1 V	±1 mV	±1 mV
			Ausgang 33250A		
11	Drücken Sie die Taste (shift), um in den Frequenzzählermodus [6] zu wechseln	999,99 kHz	200 mVrms, 100 kHz	k. A.	± 52 Hz
12	Drücken Sie die Taste Range, um in den Frequenzzählermodus mit Division durch 100 zu wechseln	99,999 MHz	600 mVrms, 10 MHz	k. A.	± 5,2 kHz
			Ausgang 5520A		
13	Drehen Sie den Drehregler in die position [7]	10,000 nF	10,000 nF	± 0,108 nF	± 0,108 nF
		100,00 nF	100,00 nF	± 1,05 nF	± 1,05 nF
		1000,0 nF	1000,0 nF	± 10,5 nF	± 10,5 nF
		10,000 μF	10,000 μF	± 0,105 μF	± 0,105 μF
		100,00 μF	100,00 μF	± 1,05 μF	± 1,05 μF

Schritt	Prüffunktion	Bereich	Ausgang 5220A	Abweichung vom Nominalwert in 1 Jahr	
				U1251B	U1252B
		1000,0 μF	1000,0 μF	± 10,5 μF	± 10,5 μF
		10,00 mF	10,00 mF	± 0,105 mF	± 0,105 mF
		100,00 mF	10,00 mF	± 0,4 mF	± 0,4 mF
14	Drücken Sie die Taste Shift um in den -Modus [8][13] zu wechseln	-200 °C bis 1372 °C	0 °C	±3°C	± 3 °C
			100 °C	± 3,3 °C	± 3,3 °C
15	Drehen Sie den Drehregler in die Position µA ~	500 μΑ	500 μΑ	± 0,55 μA ^[9]	± 0,3 μΑ ^[9]
		5000 μΑ	5000 μΑ	± 5,5 μA ^[9]	± 3 μΑ ^[9]
16	Drücken Sie die Taste Snin, um in den uA-Modus [1] zu wechseln	500 μΑ	500 μA, 1 kHz	± 4,2 μΑ	± 3,7 μΑ
			500 μA, 20 kHz	± 15,8 μA	± 3,95 μA
		5000 μΑ	5000 μA, 1 kHz	± 42 μA	± 37,0 μA
			5000 μA, 20 kHz	± 0,156 mA	± 39,5 μA
17	Drehen Sie den Drehregler in die position mA·A	50 mA	50 mA	± 0,105 mA ^[9]	± 80 μA ^[9]
		440 mA	400 mA	± 0,93 mA ^[9]	± 0,71 mA ^[9]
18	Drücken Sie die Taste Shift, um in den mA-Modus [1] zu wechseln	50 mA	50 mA, 1 kHz	± 0,42 mA	± 0,37 mA
			50 mA, 20 kHz	± 1,56 mA	± 0,395 mA
		440 mA	400 mA, 45 Hz	± 3,4 mA	± 3,0 mA
			400 mA, 1 kHz	± 3,4 mA	± 3,0 mA

Schritt	Prüffunktion	Bereich	Ausgang 5220A	Abweichung vom Nominalwert in 1 Jahr	
			522UA	U1251B	U1252B
	Vorsicht: Verbinden Sie das Eichg 10 A anlegen.	erät mit den Anschlü	issen A und COM	des Multimeters, b	evor Sie 5 A und
		5 A	5 A	± 16 mA	± 16 mA
		10 A ^[10]	10 A	± 40 mA	± 35 mA
19	Drücken Sie die Taste Shin, um in den A-Modus Zu wechseln	5 A	5 A, 1 kHz	± 42 mA	± 37 mA
		3A	3 A, 5 kHz	± 96 mA	± 96 mA
		10 A ^[11]	10 A, 1 kHz	± 100 mA	± 90 mA
		Rechteck- wellen-ausgabe	Verwendung des 53131A		
20	Drehen Sie den Drehregler in die Position 7007 ms	120 Hz bei 50 %		k. A.	± 26 mHz
		4800 Hz bei 50 %		k. A.	± 260 mHz
	лл % Arbeitszyklus	100 Hz bei 50 %		k. A.	± 0,398% ^[12]
		100 Hz bei 25 %		k. A.	± 0,398% ^[12]
		100 Hz bei 75 %		k. A.	± 0,398% ^[12]
			Verwendung des 34410A		
	ллл % Amplitude	4800 Hz bei 99,609 %		k. A.	± 0.2V

Hinweise zum Überprüfungstest:

- 1 Der zusätzliche, als Frequenz >20 kHz und Signaleingang <10 % des Bereichs zu addierende Fehler: 3 Zähler von LSD pro kHz.
- 2 Die Genauigkeit könnte 0,05% + 10 betragen. Verwenden Sie stets die Relationsfunktion, um den Wärmeeffekt auf null zu setzen (kurze Testleitungen), bevor Sie das Signal messen.
- 3 Die Genauigkeit von 500 W und 5 kW wird nach der Null-Funktion angegeben.
- 4 Für den Bereich von 50 MW/500 MW ist eine relative Luftfeuchtigkeit von < 60% angegeben.
- 5 Die Genauigkeit wird für < 50 nS angegeben und nach der Null-Funktion mit offener Testleitung.

- 6 Alle Frequenzzähler sind bei der Messung von Signalen mit niedriger Spannung und niedriger Frequenz fehleranfällig. Abschirmung der Eingänge von externem Rauschen ist entscheidend für die Minimierung der Messfehler.
- 7 Verwenden Sie den Null-Modus, um auf null zurückzusetzen.
- 8 Die Genauigkeit beinhaltet nicht die Toleranz der Thermoelementsonde. Der an das Messgerät angeschlossene Thermosensor sollte sich mindestens eine Stunde lang in der Betriebsumgebung befinden. Reduzieren Sie den Wärmeeffekt mittels der Null-Funktion.
- 9 Verwenden Sie stets die Relationsfunktion, um den Wärmeeffekt mit offener Testleitung auf null zu setzen, bevor Sie das Signal messen. Falls Sie die Relationsfunktion nicht verwenden, addieren Sie 20 Ziffern zur Genauigkeit.
- 10 10 A fortlaufend, und der Zusatz von 0,5% zur angegebenen Genauigkeit, wenn für höchstens 30 Sekunden ein Signal von mehr als 10 A~20 A gemessen wird. Nach Messung einer Stromstärke von > 10 A sollte das Messgerät über einen Zeitraum abkühlen, der doppelt so lang ist wie die vor der Messung der niedrigen Stromstärke benötigte Messungszeit.
- 11 Die Stromstärke kann fortlaufend von 2,5 A bis 10 A gemessen werden, und der Zusatz von 0,5% zur angegebenen Genauigkeit erfolgt, wenn für höchstens 30 Sekunden ein Signal von mehr als 10 A~20 A gemessen wird. Nach Messung einer Stromstärke von > 10 A sollte das Messgerät über einen Zeitraum abkühlen, der doppelt so lang ist wie die vor der Messung der niedrigen Stromstärke benötigte Messungszeit.
- 12 Für Signalfrequenzen über 1 kHz müssen zur Genauigkeit zusätzlich 0,1% je kHz hinzugefügt werden.
- 13 Stellen Sie sicher, dass die Umgebungstemperatur stabil bei einem Wert ± 1 °C liegt. Das Multimeter muss sich für mindestens 1 Stunde in derselben Betriebsumgebung befinden. Halten Sie das Multimeter von Lüftungsauslässen entfernt. Berühren Sie die Testleitungen der Thermoelementsonde nach dem Anschließen an den Kalibrator nicht mehr. Warten Sie etwa 15 Minuten, bis die Verbindung stabil ist, bevor Sie mit der Messung fortfahren.

Entsichern des Instruments zur Kalibrierung

Bevor Sie das Instrument einstellen können, müssen Sie es durch Eingabe des richtigen Sicherheitscodes entsichern. Der Sicherheitscode ist bei Auslieferung des Instruments auf 1234 eingestellt. Der Sicherheitscode wird im permanenten Speicher gespeichert und ändert sich nach dem Ausschalten nicht.

So entsichern Sie das Instrument am vorderen Bedienfeld

- **4** Drehen Sie den Drehregler in die Position **∼ ∨** .
- 5 Drücken Sie die Tasten und Hz simultan, um in den Modus zur Eingabe des Kalibrierungssicherheitscodes zu wechseln.
- **6** Die Primäranzeige zeigt 5555 und die Sekundäranzeige SECUr an.
- 7 Wechseln Sie mit den Bearbeitungstasten Range und zu jedem Zeichen im Code.

Wählen Sie mit den Tasten hold und vijedes Zeichen aus.

- **8** Drücken Sie zum Abschluss (Speichern).
- **9** Ist der richtige Sicherheitscode eingegeben, zeigt die Sekundäranzeige PASS an.

So ändern Sie den Kalibrierungssicherheitscode des Instruments am vorderen Bedienfeld

- 1 Befindet sich das Instrument im ungesicherten Modus, drücken Sie die Taste länger als 1 Sekunde, um in den Einstellungsmodus für den Kalibrierungssicherheitscode zu wechseln.
- **2** Der werkseitige, standardmäßige Kalibrierungssicherheitscode 1234 wird in der Primäranzeige angezeigt.
- 3 Wechseln Sie mit den Bearbeitungstasten Range und zu jedem Zeichen im Code.
- 4 Ändern Sie mit Hold und Null jedes Zeichen im Code.
- 5 Drücken Sie die Taste (Speichern), um den neuen Kalibrierungssicherheitscode zu speichern.
- **6** Wurde der neue Kalibrierungssicherheitscode erfolgreich gespeichert, zeigt die Sekundäranzeige PASS an.

6

So entsichern Sie das Instrument ohne Sicherheitscode

Um das Instrument ohne den richtigen Sicherheitscode zu entsichern, gehen Sie wie folgt vor:

HINWEIS

Falls Sie keine Notiz des Sicherheitscodes besitzen, versuchen Sie es zuerst mit Eingabe von 1234 (werkseitiger Standardcode) über das vordere Bedienfeld.

- 1 Notieren Sie die 4 Ziffern der Seriennummer des Instruments.
- 2 Drehen Sie den Drehregler in die Position ~ V.
- 3 Drücken Sie die Tasten und wie simultan, um in den Modus zur Eingabe des Kalibrierungssicherheitscodes zu wechseln.

 Die Primäranzeige zeigt 5555 und die Sekundäranzeige SECUr an.
- 4 Drücken Sie die Taste Slänger als 1 Sekunde, um in den Modus zur Einstellung des standardmäßigen Sicherheitscodes zu wechseln. Die Sekundäranzeige zeigt SEr.no und die Primäranzeige 5555 an.
- **5** Wechseln Sie mit den Bearbeitungstasten Range und zu jedem Zeichen im Code.
- **6** Wählen Sie mit den Tasten Hold und Null jedes Zeichen aus.
- 7 Stellen Sie den Code ein, der mit den letzten 4 Ziffern der Seriennummer des Instruments identisch ist.
- 8 Drücken Sie die Taste (Speichern), um den Eintrag zu bestätigen.
- **9** Falls die richtigen 4 Ziffern der Seriennummer eingegeben wurden, zeigt die Sekundäranzeige kurz PASS an.

Jetzt können Sie 1234 als Sicherheitscode verwenden. Zur Eingabe eines neuen Sicherheitscodes siehe "So ändern Sie den Kalibrierungssicherheitscode des Instruments am vorderen Bedienfeld" auf Seite 135. Denken Sie daran, den neuen Sicherheitscode zu notieren.

Kalibrierungsprozess

Das folgende allgemeine Verfahren ist die empfohlene Methode zur Durchführung einer vollständigen Kalibrierung des Instruments.

- 1 Lesen Sie "Überlegungen zum Test" auf Seite 124.
- **2** Führen Sie die Überprüfungstests zur Charakterisierung des Instruments durch (Eingangsdaten).
- **3** Entsichern Sie das Instrument zur Kalibrierung (siehe "Kalibrierungssicherheit" auf Seite 125).
- **4** Führen Sie die Einstellungen durch (siehe "Überlegungen zu Einstellungen" auf Seite 139).
- **5** Sichern Sie das Instrument gegen Kalibrierung.
- **6** Notieren Sie den neuen Sicherheitscode und die Kalibrierungszahl in den Wartungsunterlagen des Instruments.

Verlassen Sie den Einstellungsmodus, und schalten Sie das Instrument aus.

6

Dieser Abschnitt beschreibt die Durchführung von Einstellungen am vorderen Bedienfeld.

Auswahl des Einstellungsmodus

Entsichern Sie das Instrument gemäß Beschreibung in "Entsichern des Instruments zur Kalibrierung" auf Seite 134 oder "So entsichern Sie das Instrument ohne Sicherheitscode" auf Seite 136. Nach Entsicherung wird der Referenzwert in der Primäranzeige angezeigt.

Eingabe von Einstellungswerten

So geben Sie bei der Einstellung des digitalen Handmultimeters einen Eingabekalibrierungswert am vorderen Bedienfeld ein:

- 1 Wählen Sie mit den Bearbeitungstasten Range und jede Ziffer in der Primäranzeige.
- **2** Gehen Sie mit den Pfeiltasten Hold und Null durch die Ziffern von 0 bis 9.
- 3 Drücken Sie nach Abschluss (Hz), um die Kalibrierung zu starten.

Überlegungen zu Einstellungen

Sie benötigen ein Testeingangskabel und einen Anschlusssatz sowie einen Kurzschlussstecker zur Einstellung des Instruments.

HINWEIS

Nach jeder Einstellung zeigt die Sekundäranzeige kurz PASS an. Schlägt die Kalibrierung fehl, gibt das Handmultimeter einen Signalton aus, und in der Sekundäranzeige wird eine Fehlerzahl angezeigt. Fehlermeldungen zur Kalibrierung werden auf Seite 149 beschrieben. Schlägt die Kalibrierung fehl, lösen Sie das Problem, und wiederholen Sie das Verfahren.

Einstellungen für jede Funktion sollten nur in der nachstehenden Reihenfolge durchgeführt werden.

- 1 Den Einstellungen sollte eine fünfminütige Aufwärm- und Stabilisierungszeit des Instruments vorangehen.
- 2 Stellen Sie sicher, dass während der Einstellung kein niedriger Batterieladestatus angezeigt wird. Erstzen Sie die Batterien sobald wie möglich, um falsche Messwerte zu vermeiden.
- **3** Berücksichtigen Sie die Wärmewirkungen, wenn Sie Testleitungen an Eichgerät und Handmultimeter anschließen. Sie sollten nach Anschluss der Testleitungen eine Minute warten, bevor Sie mit der Kalibrierung beginnen.
- 4 Stellen Sie während der Einstellung der Umgebungstemperatur sicher, dass das Instrument seit mindestens 1 Stunde eingeschaltet ist, wobei ein K-Type-Thermoelement zwischen Instrument und Kalibrierungsquelle geschaltet ist.

VORSICHT

Schalten Sie das Instrument niemals während einer Einstellung aus. Dadurch könnte der Kalibrierungsspeicher für die aktuelle Funktion gelöscht werden.

Gültige Einstellungseingabewerte

Die Einstellung kann mit den nachstehenden Eingabewerten durchgeführt werden.

Tabelle 6-3 Gültige Einstellungseingabewerte

Funktion	Bereich	Gültige Amplitudeneingabewerte
~ v	5 V, 50 V, 500 V, 1000 V	0,9 bis 1,1 x Full Scale
(für U1251B)	5 V, 50 V, 500 V, 1000 V	0,9 bis 1,1 x Full Scale
∼ ∨ (für U1252B)	5 V, 50 V ,500 V, 1000 V	0,9 bis 1,1 x Full Scale
~ mV	50 mV, 500 mV, 1000 mV	0,9 bis 1,1 x Full Scale
μ Α ~	500 μΑ, 5000 μΑ	0,9 bis 1,1 x Full Scale
mA·A 	50 mA, 440 mA, 5 A, 10 A	0,9 bis 1,1 x Full Scale
Ω	500 Ω , 5 k Ω , 50 k Ω ,500 k Ω , 5 M Ω , 50 M Ω	0,9 bis 1,1 x Full Scale
→	Diode	0,9 bis 1,1 x Full Scale
⊣⊢ / ↓	10 nF, 100 nF, 1000 nF, 10 μF, 100 μF, 1000 μF, 10 mF/0 °C	Sorgen Sie für 0 °C mit Außentemperaturausgleich

Einstellungsverfahren

Lesen Sie "Überlegungen zum Test" auf Seite 124 und "Überlegungen zu Einstellungen" auf Seite 139, bevor Sie mit diesem Verfahren beginnen.

- **1** Drehen Sie den Drehregler in die "Test Function"-Position, gezeigt in der Einstellungstabelle.
- 2 Nach Entsichern wechselt das Instrument in den Einstellungsmodus. (Siehe "Entsichern des Instruments zur Kalibrierung" auf Seite 134)

HINWEIS

Dieses Instrument verbleibt im Einstellungsmodus, bis Sie die Tasten Shift und Hz simultan drücken, um den Einstellungsmodus zu beenden.

- 3 Die Primäranzeige zeigt den Referenzwert des Elements Cal an.
- 4 Konfigurieren Sie jedes Cal-Element.
- **5** Wählen Sie mit den Pfeiltasten Hold und Null den Cal-Bereich aus.
- **6** Wenden Sie das in der Eingangsspalte der Tabelle gezeigte Eingangssignal an. Die Säulendiagrammanzeige zeigt den Eingangsmesswert an. Für die Temperatureinstellung ist keine Säulendiagrammanzeige vorhanden.

HINWEIS

Führen Sie die Tests stets in der in der entsprechenden Tabelle vorgegebenen Reihenfolge aus.

- 7 Geben Sie den tatsächlich angewandten Eingang ein (siehe "Eingabe von Einstellungswerten" auf Seite 138).
- 8 Drücken Sie (Hz), um die Einstellung zu starten. CAL blinkt in der Sekundäranzeige auf, um anzuzeigen, dass die Kalibrierung durchgeführt wird.

Für jeden Einstellungswert zeigt die Sekundäranzeige bei erfolgreicher Durchführung kurz PASS an. Für einen Einstellungsfehler wird ein langer Signalton ausgegeben und eine Kalibrie-rungsfehlernummer in der Sekundäranzeige angezeigt. In der Primäranzeige wird das aktuelle Cal-Element angezeigt. Überprüfen Sie Eingangswert, Bereich, Funktion und eingegebenen Einstellungswert, um das Problem zu beheben, und wiederholen Sie die Einstellungsschritte.

- **9** Wiederholen Sie die Schritte 1 bis 8 für jeden Einstellungspunkt.
- **10** Überprüfen Sie die Anpassungen mithilfe von "Leistungsüberprüfungstests" auf Seite 126 und Tabelle 6-4

HINWEIS

Für die Seriennummern unter MY51510001 wird die Eingangsfrequenz 10 kHz auf die mit Sternchen (*) gekennzeichneten Elemente angewendet.

Tabelle 6-4 Einstellungstabelle

Schritt	Prüffunktion	Cal-Bereich	Finner	Cal-E	lement
Schritt	Prununktion	Cai-Bereich	Eingang	U1251B	U1252B
1	Drehen Sie den Drehregler in die Position V	5 V	0.3 V,1 kHz	0,3000 V	0,3000 V
			3 V, 1 kHz	3,0000 V	3,0000 V
			3 V, 20 kHz *	3,0000 V	3,0000 V
		50 V	3 V, 1 kHz	03,000 V	03,000 V
			30 V, 1 kHz	30,000 V	30,000 V
			30 V, 20 kHz *	3,0000 V	30,000 V
		500 V	30 V,1 kHz	030,00 V	030,00 V
			300 V,1 kHz	300,00 V	300,00 V
			300 V, 20 kHz *	3,0000 V	300,00 V
		1000 V	30 V, 1 kHz	0030,0 V	0030,0 V
			300 V, 1 kHz	0300,0 V	0300,0 V
			300 V, 20 kHz *	3,0000 V	0300,0 V
2	Drehen Sie den Drehregler in die V Position (für Modell U1252B), in die Position (für Modell U1251B)	Kurz- schließen	Doppelbananen- stecker mit Kupferdraht zum Kurzschließen von zwei Anschlüssen	Kurz-schließen	Kurz-schließen
		5 V	3 V	3,0000 V	3,0000 V
		50 V	30 V	30,000 V	30,000 V
		500 V	300 V	300,000 V	300,00 V
		1000 V	1000 V	1000,0 V	1000,0 V

0.1.24	D.::#	0.15	.	Cal-Ele	ement
Schritt	Prüffunktion	Cal-Bereich	Eingang	U1251B	U1252B
3	Drücken Sie die Taste , um in den V-Modus zu wechseln	5 V	0,3 V, 1 kHz	k. A.	0,3000 V
			3 V, 1 kHz	k. A.	3,0000 V
			3 V, 20 kHz *	k. A.	3,0000 V
		50 V	3 V, 1 kHz	k. A.	03,000 V
			30 V, 1 kHz	k. A.	30,000 V
			30 V, 20 kHz *	k. A.	30,000 V
		500 V	30 V, 1 kHz	k. A.	030,00 V
			300 V, 1 kHz	k. A.	300,00 V
			300 V, 20 kHz *	k. A.	300,00 V
		1000 V	30 V, 1 kHz	k. A.	0030,0 V
			300 V, 1 kHz	k. A.	0300,0 V
			300 V, 20 kHz *	k. A.	0300,0 V
4	Drehen Sie den Drehregler in die Position mV	Kurz- schließen	Doppelbananen-st ecker mit Kupferdraht zum Kurzschließen von zwei Anschlüssen	Kurz- schließen	Kurz- schließen
		50 mV	30 mV	30,000 mV	30,000 mV
		500 mV	300 mV	300,00 mV	300,00 mV
		1000 mV	1000 mV	1000,0 mV	1000,0 mV

0-1:44	D.::#	Cal Bausiah	F:	Cal-E	lement
Schritt	Prüffunktion	Cal-Bereich	Eingang	U1251B	U1252B
5	Drücken Sie die Taste Shift , um in den ~ mV-Modus zu	50 mV	3 mV, 1 kHz	03,000 mV	03,000 mV
	wechseln		30 mV, 1 kHz	30,000 mV	30,000 mV
			30 mV, 20 kHz *	30,000 mV	30,000 mV
		500 mV	30 mV, 1 kHz	030,00 mV	030,00 mV
			300 mV, 1 kHz	300,00 mV	300,00 mV
			300 mV, 20 kHz *	30,000 mV	300,00 mV
		1000 mV	30 mV, 1 kHz	0030,0 mV	0030,0 mV
			1000 mV, 1 kHz	1000,0 mV	1000,0 mV
			1000 mV, 20 kHz*	30,000 mV	1000,0 mV
6	Drehen Sie den Drehregler in die Position $\Omega^{\left[1\right]}$	Kurz- schließen	Doppelbananen- stecker mit Kupferdraht zum Kurzschließen von zwei Anschlüssen	Kurz- schließen	Kurz- schließen
		50 MΩ	Eingangsan- schluss offen (Entfernen Sie die Testleitungen und Kurzschluss- stecker vom Ein- gangsanschluss)	Offen	Offen
			10 ΜΩ	10,000 MΩ	10,000 MΩ
		5 ΜΩ	3 ΜΩ	3,0000 MΩ	3,0000 MΩ
		500 kΩ	300 kΩ	300,00 kΩ	300,00 kΩ
		50 kΩ	30 kΩ	30,000 kΩ	30,000 kΩ
		5 kΩ	3 kΩ	3,0000 kΩ	3,0000 kΩ
		500 Ω	300 Ω	300,00 Ω	300,00 Ω

0-1	Driffunktion	Cal Danaiah	F:	Cal-Element	
Schritt	Prüffunktion	Cal-Bereich	Eingang	U1251B	U1252B
7	Drehen Sie den Drehschalter in Hz/ → Position (für Modell U1252B), in → Position (für Modell U1251B)	Kurzschließen	Doppelbananen- stecker mit Kupfer- draht zum Kurzschließen	KURZSCHLIES- SEN	KURZSCHLIES- SEN
		2 V	2 V	2,0000 V	2,0000 V
8	Drehen Sie den Drehregler in die Position 🌡 / 🕕	Offen	Eingangsan- schluss offen (Entfernen Sie die Testleitungen und Kurzschluss- stecker vom Ein- gangsanschluss)	Offen	Offen
		10 nF	3 nF	03,000 nF	03,000 nF
			10 nF	10,000 nF	10,000 nF
		100 nF	10 nF	010,00 nF	010,00 nF
			100 nF	100,00 nF	100,00 nF
		1000 nF	100 nF	0100,0 nF	0100,0 nF
			1000 nF	1000,0 nF	1000,0 nF
		10 µF	10 μF	10,000 μF	10,000 μF
		100 μF	100 μF	100,00 μF	100,00 μF
		1000 μF	1000 μF	1000,0 μF	1000,0 μF
		10 mF	10 mF	10,000 mF	10,000 mF
9	Drücken Sie die Taste Shift, um in den J-Modus zu wechseln	k. A.	0 °C	0000,0 °C	0000,0 °C
10	Drehen Sie den Drehregler in die Position μΑ ~	OFFEN	Eingangsan- schluss offen (Entfernen Sie die Testleitungen und Kurzschluss- stecker vom Ein- gangsanschluss)	Offen	Offen
		500 μΑ	300 μΑ	300,00 μΑ	300,00 μΑ

0.1.24	D "# 14	0.1.0	<u>-</u>	Cal-E	al-Element	
Schritt	Prüffunktion	Cal-Bereich	Eingang	U1251B	U1252B	
		5000 μΑ	3000 μΑ	3000,0 μΑ	3000,0 μΑ	
11	Drücken Sie die Taste Shift ,	500 μΑ	30 μA, 1 kHz	030,00 μΑ	030,00 μΑ	
	um zum ~ µA-Modus zu wechseln		300 μA, 1 kHz	300,00 μΑ	300,00 μΑ	
		5000 μΑ	300 μA, 1 kHz	0300,0 μΑ	0300,0 μΑ	
			3000 μA, 1 kHz	3000,0 μΑ	3000,0 μΑ	
12	Drehen Sie den Drehregler in die Position mA·A	Offen	Eingangsan- schluss offen (Entfernen Sie die Testleitungen und Kurzschluss- stecker vom Ein- gangsanschluss)	Offen	Offen	
		50 mA	30 mA	30,000 mA	30,000 mA	
		440 mA	300 mA	300,00 mA	300,00 mA	
	Verschieben Sie die Messleitung v					
	Vorsicht: Verbinden Sie das Eichge 10 A anlegen.	erät mit den Ans	chlüssen A und COM	des Multimeters, b	evor Sie 3 A und	
		5 A	3 A	3,0000 A	3,0000 A	
		10 A	10 A	10,000 A	10,000 A	
	Verschieben Sie die Messleitung v	on dem Anschli	ıss A und COM zum A	nschluss uA.mA ur	nd COM	
13	Drücken Sie die Taste Shift, um	50 mA	3 mA, 1 kHz	03,000 mA	03,000 mA	
	in den 🔷 mA-Modus zu wechseln		30 mA, 1 kHz	30,000 mA	30,000 mA	
		440 mA	30 mA, 1 kHz	030,00 mA	030,00 mA	
			300 mA, 1 kHz	300,00 mA	300,00 mA	
	Verschieben Sie die Messleitung v	on dem Anschli	uss uA.mA und COM z	um Anschluss A ur	nd COM	
	Vorsicht: Verbinden Sie das Eichgerät mit den Anschlüssen A und COM des Multimeters, bevor Sie 3 A und 10 A anlegen.					

14	Drücken Sie die Taste Shift, um	5 A	0,3 A, 1 kHz	0,3000 A	0,3000 A
	in den ~ A-Modus zu wechseln		3 A, 1 kHz	3,0000 A	3,0000 A
		10 A	3 A, 1 kHz	3,0000 A	3,0000 A
			10 A, 1 kHz	10,000 A	10,000 A

Hinweise zur Anpassungstabelle:

- 1 Achten Sie darauf, "Short" nach der Widerstandskalibrierung unter Verwendung des doppelten Bananensteckers mit Kupferdraht neu zu kalibrieren.
- 2 Stellen Sie sicher, dass das Multimeter eingeschaltet ist und für mindestens 60 Minuten stabilisiert wurde, wobei das K-Typ-Thermoelement das Multimeter mit dem Kalibratorausgang verbindet.

Beenden der Einstellung

- 1 Entfernen Sie alle Kurzschlussstecker und Anschlüsse von dem Instrument.
- 2 Zeichnen Sie die neue Kalibrierungszahl auf.
- 3 Drücken Sie und simultan, um den Einstellungsmodus zu beenden. Schalten Sie das Gerät aus und wieder ein. Das Instrument ist nun gesichert.

So lesen Sie die Kalibrierungszahl

Sie können das Instrument abfragen, um zu bestimmen, wie viele Kalibrierungen durchgeführt wurden.

Ihr Instrument wurde kalibriert, bevor es das Werk verließ.

Wenn Sie Ihr Instrument erhalten, lesen Sie die Zahl, um seinen Ausgangswert zu bestimmen.

Die Zahl wird für jeden Kalibrierungspunkt um eins inkrementiert, und eine vollständige Kalibrierung erhöht den Wert um viele Zahlen. Die Kalibrierungszahl wird maximal bis 65535 inkrementiert, wonach sie wieder bei 0 beginnt. Sie kann am vorderen Bedienfeld abgelesen werden, nachdem das Instrument entsichert wurde. Lesen Sie die Kalibrierungszahl wie nachstehend beschrieben am vorderen Bedienfeld ab.

- 1 Drücken Sie auf für den Einstellungsmodus. Die Primäranzeige zeigt die Kalibrierungszahl an.
- 2 Notieren Sie die Zahl.
- 3 Drücken Sie erneut auf (), um den Kalibrierungszahlmodus zu beenden.

Kalibrierungsfehler

Folgende Fehler können während der Kalibrierung auftreten:

Tabelle 6-5 Kalibrierungsfehlercodes und ihre jeweilige Bedeutung

Fehlercode	Beschreibung
200	Kalibrierungsfehler: Kalibrierungsmodus ist gesichert
002	Kalibrierungsfehler: Sicherheitscode ungültig
003	Kalibrierungsfehler: Seriennummerncode ungültig
004	Kalibrierungsfehler: Kalibrierung abgebrochen
005	Kalibrierungsfehler: Wert außerhalb des Bereichs
006	Kalibrierungsfehler: Signalmessung außerhalb des Bereichs
007	Kalibrierungsfehler: Frequenz außerhalb des Bereichs
008	EEPROM-Schreibfehler

Agilent U1251B und U1252B Digitales Handmultimeter Benutzer- und Servicehandbuch

Spezifikationen

```
Messkategorie 155
 Messkategoriedefinition 155
Spezifikationsbedingungen 156
Elektrische Spezifikationen 156
 DC Specifications 156
 AC-Spezifikationen 159
 AC+DC-Spezifikationen für U1252B 161
 Kapazitätsspezifikationen 162
 Temperaturspezifikationen 162
 Frequenzspezifikationen 163
 Arbeitszyklus- und Impulsbreitenspezifikationen 163
 Spezifikationen für Frequenzempfindlichkeit 164
 Spezifikationen für Spitzenwerthalten 166
 Spezifikationen für Frequenzzähler (U1252B) 166
 Rechteckwellenausgabe für U1252B 167
Betriebsspezifikationen 169
 Anzeigen der Aktualisierungsrate (ungefähr) 169
 Eingangsimpedanz 170
```

In diesem Kapitel sind die Produktmerkmale, die Spezifikationsbedingungen und die Spezifikationen der digitalen Multimeter U1251B und U1252B aufgeführt.

Produkteigenschaften

NETZTEIL

Batterietyp:

- Aufladbarer Ni-MH-Akku mit 7,2 V Nennspannung, Größe 9 V
- Aufladbarer Ni-MH-Akku mit 8,4 V Nennspannung, Größe 9 V
- 9-V-Alkalibatterie (ANSI/NEDA 1604A oder IEC 6LR61)
- 9-V-Zink-Kohle-Batterie (ANSI/NEDA 1604D oder IEC6F22)

Akku-/Batteriebetriebsdauer:

- 8 Stunden typisch (basierend auf vollständig geladenen Ni-MH-Akkus mit 300 mAH für DC-Spannungsmessung)
- 14 Stunden typisch (basierend auf neuen 9-V-Alkalibatterien für DC-Spannungsmessung)

Ladedauer:

 Weniger als 220 Minuten bei einer Umgebungstemperatur von 10 °C bis 30°C. (Bei tiefentladenem Akku ist eine verlängerte Ladezeit zur Wiederherstellung der vollständigen Kapazität erforderlich.)

ENERGIEVERBRAUCH

- 105 mVA / 420 mVA (mit Hintergrundbeleuchtung) maximal (U1251B)
- 165 mVA / 480 mVA (mit Hintergrundbeleuchtung) maximal (U1252B)

ANZEIGE

- Sowohl Primär- als auch Sekundäranzeige sind 5-stellige LCD-Anzeigen mit einer Maximalerfassung von 50.000 Messungen.
- Automatische Polaritätsanzeige.

BETRIEBSUMGEBUNG

- Temperatur: Volle Genauigkeit von -20 °C bis 55 °C
- Luftfeuchtigkeit: Volle Genauigkeit bei bis zu 80 % RH (relative Luftfeuchtigkeit) bei Temperaturen bis 35 °C, linear abnehmend bis 50 % RH bei 55 °C
- · Höhe:
 - 0 2000 Meter gemäß IEC 61010-1 2nd Edition CAT III, 1000 V/CAT IV, 600 V
- Verschmutzungsgrad II

LAGERUNGSTEMPERATUR

-40 °C bis 70 °C (ohne Batterie)

SICHERHEITSNORMEN

- EN/IEC 61010-1:2001
- ANSI/UL 61010-1:2004
- CAN/CSA-C22.2 Nr. 61010-1-04

MESSKATEGORIE

CAT III 1000 V/ CAT IV 600 V Überspannungsschutz

EMV-RICHTLINIEN

- Zertifiziert nach IEC61326-1:2005 / EN61326-1:2006
- CISPR 11:2003/EN 55011:2007 Gruppe 1 Klasse A
- Kanada: ICES-001:2004
- Australien/Neuseeland: AS/NZS CISPR11:2004

STOSS UND VIBRATION

Geprüft nach IEC / EN 60068-2

TEMPERATURKOEFFIZIENT

0,15 × (angegebene Genauigkeit) / °C (von –20 °C bis 18 °C, bis 28 °C bis 55 °C)

GLEICHTAKTUNTERDRÜCKUNGSVERHÄLTNIS (CMRR)

>90 dB bei DC, 50/60 Hz \pm 0,1% (1 k Ω unsymmetrisch)

GEGENTAKTUNTERDRÜCKUNGSVERHÄLTNIS (NMRR)

>60 dB bei 50/60 Hz $\pm 0.1\%$

ABMESSUNGEN ($B \times H \times T$)

94.4 × 203.5 × 59 mm

GEWICHT

- 504±5 Gramm mit Batterie (U1251B)
- 527±5 Gramm mit Batterie (U1252B)

7 Spezifikationen

GARANTIE

Siehe hierzu http://www.agilent.com/go/warranty_terms

- · Drei Jahre für das Produkt
- Drei Monate für Standardzubehör des Produkts, sofern nicht anders angegeben

Beachten Sie, dass Folgendes nicht im Rahmen der Produktgarantie abgedeckt wird:

- · Schäden durch Verunreinigung
- · Normale Abnutzung der mechanischen Komponenten
- · Handbücher, Sicherungen und Standardeinwegbatterien

KALIBRIERUNGSZYKLUS

1 Jahr

Messkategorie

Das Agilent U1251B and U1252B Handheld Digital Multimeter hat die Sicherheitseinstufung CAT III 1000 V/ CAT IV, 600 V.

Messkategoriedefinition

Messkategorie I Messungen in Schaltkreisen, die nicht direkt an das Hauptstromnetz angeschlossen sind. Beispiele: Messungen an Stromkreisen, die nicht vom AC-Hauptstromnetz abgeleitet sind, oder an vom Hauptstromnetz abgeleiteten Stromkreisen, die besonders gesichert sind (intern).

Messkategorie II Messungen in Schaltkreisen, die direkt an eine Niederspannungsinstallation angeschlossen sind. Beispiele: Messungen an Haushaltsgeräten, tragbaren Geräten und vergleichbaren Geräten.

Messkategorie III Messungen an Gebäudeinstallationen. Beispiele: Messungen an Verteilungen, Trennschaltern, Verkabelungen, einschließlich Kabeln, Stromanschlüssen, Abzweigdosen, Schaltern, Steckdosen in festen Installationen und Geräte für den industriellen Gebrauch sowie einige andere Geräte einschließlich stationärer Motoren mit ständiger Verbindung zu festen Installationen.

Messkategorie IV Messungen an der Quelle einer Niederspannungsinstallation. Beispiele: Stromzähler und Messungen an primären Überspannungsschutzgeräten und Wellenkontrolleinheiten.

Spezifikationsbedingungen

- Die DC-Spezifikationen beziehen sich auf Messungen, die nach einer mindestens einminütigen Aufwärmphase durchgeführt werden.
- Die AC- und AC+DC-Spezifikationen beziehen sich auf Messungen von Sinuskurven, die nach einer mindestens einminütigen Aufwärmphase durchgeführt werden.
- Die Genauigkeit des Multimeters kann beeinträchtigt werden, wenn es in einer Umgebung verwendet wird, in der elektromagnetische Interferenzen oder nennenswerte elektrostatische Ladungen auftreten.

Elektrische Spezifikationen

DC Specifications

Tabelle 7-1 DC-Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer)

_	_		Teststrom/	Genauigkeit	
Funktion	Bereich	Auflösung	Lastspannung	U1251B	U1252B
	50,000 mV	0,001 mV	-	0,05 + 50 ^[2]	0,05 + 50 ^[2]
	500,00 mV	0,01 mV	-		
	1000,0 mV	0,1 mV	-		
Spannung [1]	5,0000 V	0,0001 V	-	0.02 . E	0.025 + 5
	50,000 V	0,001 V	-	0,03 + 5	
	500,00 V	0,01 V	-		0,03 + 5
	1000,0 V	0,1 V	-		

Hinweise für DC-Spannungsspezifikationen:

- 1 Eingangsimpedanz: Siehe Tabelle 7-19.
- 2 Die Genauigkeit könnte 0,05 %+ 10 für U1251B und 0,05 %+ 5 für U1252B betragen. Verwenden Sie stets die Null-Funktion, um den Wärmeeffekt auf null zu setzen, bevor Sie das Signal messen.

Tabelle 7-1 DC-Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer) (Fortsetzung)

			Teststrom/	Gena	uigkeit
Funktion	Bereich	Auflösung	Lastspannung	U1251B	U1252B
	500,00 $\Omega^{[3]}$	0,01 Ω	1,04 mA	0,08 + 10	0,05 + 10
	5,0000 k $\Omega^{[3]}$	0,0001 kΩ	416 μΑ		
	50,000 kΩ	0,001 kΩ	41,2 μΑ	0.08 + 5	
	500,00 kΩ	0,01 kΩ	4,12 μΑ		0,05 + 5
Widerstand [6]	5,0000 MΩ	0,0001 M Ω	375 nA	0,2 + 5	0,15 + 5
	50,000 M $\Omega^{[4]}$	0,001 MΩ	187 nA	1 + 10	1 + 5
	500.00 MΩ ^[4]	0.01 MΩ	187 nA	-	$3 + 10 < 200 M\Omega/$
	,	-,			$8 + 10 > 200 M\Omega$
	500,00 nS ^[5]	0,01 nS	187 nA	1 + 20	1 + 10

Hinweise für Widerstandsspezifikationen:

- 3 Die Genauigkeit von 500 Ω und 5 kΩ wird nach der Null-Funktion angegeben, die verwendet wird, um den Widerstand der Testleitung und den Wärmeeffekt abzuziehen.
- **4** Für den Bereich von 50 Ω /500 M Ω wird eine relative Luftfeuchtigkeit von <60 % angegeben.
- 5 Die Genauigkeit wird für <50 nS angegeben und nach der Null-Funktion mit offener Testleitung.
- 6 Maximale offene Spannung: <+4,2 V.

7 Spezifikationen

Tabelle 7-1 DC-Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer) (Fortsetzung)

			Teststrom/	Genauigkeit	
Funktion	Bereich Auflösung		Lastspannung	U1251B	U1252B
	500,00 μΑ	0,01 μΑ	0,06 V	0,1 + 5 ^[7]	0,05 + 5 ^[7]
	5000,0 μΑ	0,1 μΑ	0,6 V	0,1 + 5 ^[7]	0,05 + 5 ^[7]
C4	50,000 mA	0,001 mA	0,09 V	0,2 + 5 ^[7]	0,15 +5 ^[7]
Stromstärke	440,00 mA	0,01 mA	0,9 V	0,2 + 5 ^[7]	0,15 + 5 ^[7]
	5,0000 A	0,0001 A	0,2 V	0,3 + 10	0,3 + 10
	10,000 A ^[8]	0,001 A	0,4 V	0,3 + 10	0,3 + 5

Hinweise für Stromstärkespezifikationen:

- 7 Verwenden Sie stets die Null-Funktion, um den Wärmeeffekt mit offenen Testleitungen auf null zu setzen, bevor Sie das Signal messen. Wird die die Null-Funktion nicht verwendet, fügen Sie der DC-Stromstärkengenauigkeit 20 Zähler hinzu. Wärmeeffekte könnten aus folgenden Gründen auftreten:
 - Falsches Vorgehen beim Messen der Hochspannung von 50 V bis 1.000 V für Widerstands-, Dioden- und mV-Messungen.
 - · Akkuladung wurde gerade abgeschlossen.
 - Nach Messung einer Stromstärke über 440 mA. Darum sollte die Abkühlungsdauer für das Messgerät dem Doppelten der zum Messen benötigten Zeit entsprechen.
- 8 Stromstärke kann bis zu 10 A kontinuierlich gemessen werden. Fügen Sie der angegebenen Genauigkeit 0,5 % hinzu, wenn das gemessene Signal zwischen 10 A und 20 A liegt, sowie für eine Dauer von bis zu 30 Sekunden. Lassen Sie das Messgerät nach Messung einer Stromstärke von > 10 A über einen Zeitraum abkühlen, der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.

			Teststrom/	Genauigkeit U1251B U1252B	
Funktion	Bereich	Auflösung	Lastspannung		
Diodentest ^[9]	-	0,1 mV	1,04 mA	0,05 + 5	

Hinweise für Diodenspezifikationen:

9 Maximale offene Spannung: <+4,2 V.

AC-Spezifikationen

AC-Spezifikationen für U1251B

Tabelle 7-2 U1251B Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS AC-Spannung

			Frequenz					
Funktion	Bereich	Auflösung	30 Hz bis 45 Hz	45 Hz bis 1 kHz	1 kHz bis 5 kHz	5 kHz bis 30 kHz		
	50,000 mV	0,001 mV	1 + 60	0,6 + 40	1,0 + 40	1,6 + 60		
	500,00 mV	0,01 mV	1 + 60	0,6 + 25	1,0 + 40	1,6 + 60		
0	1000,0 mV	0,1 mV	1 + 60	0,6 + 25	1,0 + 25	3,5 + 120		
Spannung [1][2]	5,0000 V	0,0001 V	1 + 60	0,6 + 25	1,0 + 25	3,5 + 120		
	50,000 V	0,001 V	1 + 60	0,6 + 25	1,0 + 25	3,5 + 120		
	500,00 V	0,01 V	1 + 60	0,6 + 25	1,0 + 25	-		
	1000,0 V	0,1 V	1 + 60	0,6 + 40	1,0 + 40	-		

Hinweise für U1251B AC-Spannungsspezifikationen:

- 1 Eingangsimpedanz: Siehe Tabelle 7-19.
- 2 AC-mV/V- und AC-µA/mA/A-Spezifikationen sind True-RMS-AC-gekoppelt, gültig für den Bereich von 5 % bis 100 %. Der Scheitelfaktor kann bei Full Scale bis zu 3, bei Half Scale bis zu 5 betragen, mit Ausnahme des 1.000-mV- und 1.000-V-Bereichs, wo der Scheitelfaktor 1,5 bei Full Scale und 3 bei Half Scale beträgt.

Tabelle 7-3 U1251B Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS AC-Stromstärke

			Frequenz				
Funktion	Bereich	Auflösung	30 Hz bis 45 Hz	45 Hz bis 2 kHz	2 kHz bis 20 kHz		
	500,00 μA ^[2]	0,01 μΑ	1,5 + 50	0,8 + 20	3 + 80		
	5000,0 μΑ	0,1 μΑ	1,5 + 40	0.8 + 20	3 + 60		
0 [1]	50,000 mA	0,001 mA	1,5 + 40	0.8 + 20	3 + 60		
Stromstärke [1]	440,00 mA	0,01 mA	1,5 + 40	0.8 + 20	3 + 60		
	5,0000 A	0,0001 A	2 + 40 ^[4]	0.8 + 20	3 + 60		
	10,000 A ^[3]	0,001 A	2 + 40 ^[4]	0.8 + 20	< 3 A/5 kHz		

Hinweise für U1251B AC-Stromstärkespezifikationen:

- 1 AC-mV/V- und AC-μA/mA/A-Spezifikationen sind True-RMS-AC-gekoppelt, gültig für den Bereich von 5 % bis 100 %. Der Scheitelfaktor kann bei Full Scale bis zu 3, bei Half Scale bis zu 5 betragen, mit Ausnahme des 1.000-mV- und 1.000-V-Bereichs, wo der Scheitelfaktor 1,5 bei Full Scale und 3 bei Half Scale beträgt.
- **2** Eingangsstromstärke > 35 μArms.
- 3 Stromstärke kann von 2,5 Å bis zu 10 Å kontinuierlich gemessen werden. Fügen Sie der angegebenen Genauigkeit 0,5 % hinzu, wenn das gemessene Signal zwischen 10 Å und 20 Å liegt, sowie für eine Dauer von bis zu 30 Sekunden. Lassen Sie das Messgerät nach Messung einer Stromstärke von > 10 Å über einen Zeitraum abkühlen, der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 4 Eingangsstromstärke < 3 Arms.

7 Spezifikationen

AC-Spezifikationen für U1252B

Tabelle 7-4 U1252B Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS AC-Spannung

			Frequenz				
Function	Bereich	Auflösung	20 Hz – 45 Hz	45 Hz – 1 kHz	1 kHz – 5 kHz	5 kHz – 15 kHz	15 kHz – 100 kHz ^[1]
	50,000 mV	0,001 mV	1,5 + 60	0,4 + 40	0,7 + 40	0,75 + 40	3,5 + 120
	500,00 mV	0,01 mV	1,5 + 60	0,4 + 25	0,4 + 25	0,75 + 40	3,5 + 120
0	1000,0 mV	0,1 mV	1,5 + 60	0,4 + 25	0,4 + 25	0,75 + 40	3,5 + 120
Spannung [2][3]	5,0000 V	0,0001 V	1,5 + 60	0,4 + 25	0,6 + 25	1,5 + 40	3,5 + 120
	50,000 V	0,001 V	1,5 + 60	0,4 + 25	0,4 + 25	1,5 + 40	3,5 + 120
	500,00 V	0,01 V	1,5 + 60	0,4 + 25	0,4 + 25	-	-
	1000,0 V	0,1 V	1,5 + 60	0,4 + 40	0,4 + 40	-	-

Hinweise für U1252B AC-Spannungsspezifikationen:

- 1 Der zusätzliche, als Frequenz >15 kHz und Signaleingang <10 % des Bereichs zu addierende Fehler: 3 Zähler von LSD pro kHz.
- 2 Eingangsimpedanz: Siehe Tabelle 7-19.
- 3 Scheitelfaktor ≤ 3,0 bei Full Scale, 5,0 bei Half Scale mit Ausnahme der Bereiche 1.000 mV und 1.000 V, wo der Scheitelfaktor 1,5 bei Full Scale und 3,0 bei Half Scale beträgt. Für eine nicht sinusförmige Wellenform fügen Sie 0,1% des Messwerts ± 0,3% des Bereichs hinzu.

Tabelle 7-5 U1252B Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS AC-Spannung

			Frequenz ^[5]				
Function	Bereich	Auflösung	20 Hz – 45 Hz	45 Hz – 1 kHz	1 kHz – 20 kHz	20 kHz – 100 kHz ^{[1][6]}	
	500,00 μA ^[2]	0,01 μΑ	1,0 + 20	0,7 + 20	0,75 + 20	5 + 80	
	5000,0 μΑ	0,1 μΑ	1,0 + 20	0,7 + 20	0,75 + 20	5 + 80	
Stromstärke [5]	50,000 mA	0,001 mA	1,0 + 20	0,7 + 20	0,75 + 20	5 + 80	
	440,00 mA	0,01 mA	1,0 + 20	0,7 + 20	1,5 + 20	5 + 80	
	5,0000 A	0,0001 A	1,5 + 20 ^[4]	0,7 + 20	3 + 60		
	10,000 A ^[3]	0,001 A	1,5 + 20 ^[4]	0,7 + 20	< 3 A/5 kHz	-	

Hinweise für U1252B AC-Stromstärkespezifikationen:

- 1 Der zusätzliche, als Frequenz >15 kHz und Signaleingang <10 % des Bereichs zu addierende Fehler: 3 Zähler von LSD pro kHz.
- 2 Eingangsstromstärke > 35 μArms.
- 3 Stromstärke kann von 2,5 Å bis zu 10 A kontinuierlich gemessen werden. Fügen Sie der angegebenen Genauigkeit 0,5 % hinzu, wenn das gemessene Signal zwischen 10 A und 20 A liegt, sowie für eine Dauer von bis zu 30 Sekunden. Lassen Sie das Messgerät nach Messung einer Stromstärke von > 10 A über einen Zeitraum abkühlen, der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 4 Eingangsstromstärke < 3 Arms.
- 5 Scheitelfaktor ≤ 3,0 bei Full Scale, 5,0 bei Half Scale mit Ausnahme der Bereiche 1.000 mV und 1.000 V, wo der Scheitelfaktor 1,5 bei Full Scale und 3,0 bei Half Scale beträgt. Für eine nicht sinusförmige Wellenform fügen Sie 0,1% des Messwerts ± 0,3% des Bereichs hinzu.
- 6 Durch Konstruktions- und Typprüfungen verifiziert.

AC+DC-Spezifikationen für U1252B

Tabelle 7-6 U1252B True RMS AC+DC-Spannungsspezifikationen

				Frequenz					
Funktion	Bereich	Auflösung	30 Hz – 45 Hz	45 Hz – 1 kHz	1 kHz – 5 kHz	5 kHz – 15 kHz	15 kHz – 100kHz ^[1]		
	50,000 mV	0,001 mV	1,5 + 80	0,4 + 60	0,7 + 60	0,8 + 60	3,5 + 220		
	500,00 mV	0,01 mV	1,5 + 65	0.4 + 30	0.4 + 30	0.8 + 45	3,5 + 125		
0	1000,0 mV	0,1 mV	1,5 + 65	0.4 + 30	0.4 + 30	0.8 + 45	3,5 + 125		
Spannung [2]	5,0000 V	0,0001 V	1,5 + 65	0.4 + 30	0.6 + 30	1,5 + 45	3,5 + 125		
1-1	50,000 V	0,001 V	1,5 + 65	0.4 + 30	0.4 + 30	1,5 + 45	3,5 + 125		
	500,00 V	0,01 V	1,5 + 65	0.4 + 30	0.4 + 30	-	-		
	1000,0 V	0,1 V	1,5 + 65	0,4 + 45	0.4 + 45	-	-		

Hinweise für U1252B True RMS AC+DC-Spannungsspezifikationen:

Tabelle 7-7 U1252B True RMS AC+DC-Stromstärkespezifikationen

			Frequenz				
Funktion	Bereich	Auflösung	30 Hz – 45 Hz	45 Hz – 1 kHz	1 kHz – 20 kHz		
	500,00 μA ^[1]	0,01 μΑ	1,1 + 25	0,8 + 25	0,8 + 25		
	5000,0 μΑ	0,1 μΑ	1,1 + 25	0,8 + 25	0,8 + 25		
0	50,000 mA	0,001 mA	1,2 + 25	0,9 + 25	0,9 + 25		
Stromstärke	440,00 mA	0,01 mA	1,2 + 25	0,9 + 25	0,9 + 25		
	5,0000 A	0,0001 A	1,8 + 30 ^[3]	0,9 + 30	3,3 +70		
	10,000 A ^[2]	0,001 A	1,8 + 30 ^[3]	0,9 + 25	< 3 A/5 kHz		

Hinweise für U1252B True RMS AC+DC-Stromstärkespezifikationen:

- 1 Eingangsstromstärke > 35 μ Arms.
- 2 Stromstärke kann von 2,5 A bis zu 10 A kontinuierlich gemessen werden. Fügen Sie der angegebenen Genauigkeit 0,5 % hinzu, wenn das gemessene Signal zwischen 10 A und 20 A liegt, sowie für eine Dauer von bis zu 30 Sekunden. Lassen Sie das Messgerät nach Messung einer Stromstärke von > 10 A über einen Zeitraum abkühlen, der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 3 Eingangsstromstärke < 3 Arms

¹ Der zusätzliche, als Frequenz >15 kHz und Signaleingang <10 % des Bereichs zu addierende Fehler: 3 Zähler von LSD pro kHz.

² Eingangsimpedanz: Siehe Tabelle 7-19.

Kapazitätsspezifikationen

 Tabelle 7-8
 Kapazitätsspezifikationen

Bereich	Auflösung	Genauigkeit ± (% des Messwert + Offset-Fehler)	Anzeigen der Aktualisierungsrate (ungefähr)
10,000 nF	0,001 nF	1% + 8	
100,00 nF	0,01 nF		
1000,0 nF	0,1 nF		
10,000 μF	0,001 μF		4 mal/Sek.
100,00 μF	0,01 μF		
1000,0 μF	0,1 μF	1% + 5	1 mal/Sek.
10,000 mF	0,001 mF		0,1 mal/Sek.
100,00 mF	0,01 mF	3% + 10	0,01 mal/Sek.

Hinweise für Kapazitätsspezifikationen:

Temperaturspezifikationen

Tabelle 7-9 Temperaturspezifikationen

Thermoelement Typ	Bereich	Auflösung	Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer)
V	-200 − 1372 °C/	0,1 °C/	0,3% + 3 °C/
K	–328 – 2502 °F	0,1 °F	0,3% + 6 °F
. [2]	-210 − 1200 °C/	0,1 °C/	0,3% + 3 °C/
J :-1	−346 − 2192 °F	0,1 °F	0,3% + 6 °F

¹ Setzen Sie (bei Öffnen der Testleitungen) Restversatz vor Messung des Signals mit der Null-Operation auf null.

Tabelle 7-9 Temperaturspezifikationen

Hinweise für Temperaturspezifikationen:

- 1 Die Genauigkeit wird unter den folgenden Bedingungen spezifiziert:
 - Die Genauigkeit beinhaltet nicht die Toleranz der Thermoelementsonde. Der an das Messgerät angeschlossene Thermosensor sollte sich mindestens eine Stunde lang in der Betriebsumgebung befinden.
 - Reduzieren Sie den Wärmeeffekt mittels der Null-Funktion. Setzen Sie den Multimeter vor Verwendung der Null-Funktion in den Modus ohne Außentemperaturausgleich (() () (), und lassen Sie die Thermoelementsonde so nah wie möglich am Multimeter, wobei Sie den Kontakt mit jeder Oberfläche vermeiden, die eine von der Umgebungstemperatur abweichende Temperatur aufweist.
 - Bei Messung der Temperatur mit Bezug auf ein Temperatureichgerät versuchen Sie, sowohl das Eichgerät als auch das Messgerät nach einer externen Referenz einzurichten (ohne internen Außentemperaturausgleich). Werden sowohl Eichgerät als auch Messgerät nach einer internen Referenz eingerichtet (mit internem Außentemperaturausgleich), kann aufgrund von Unterschieden im Außentemperaturausgleich zwischen Eichgerät und Messgerät eine Abweichung zwischen den Messungen von Eichgerät und Messgerät auftreten.
- 2 Dieser Thermoelementtyp ist nur für das U1252B verfügbar.

Frequenzspezifikationen

Tabelle 7-10 Frequenzspezifikationen

Bereich	Auflösung	Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer)	Min. Eingangsfrequenz ^[1]
99,999 Hz	0,001 Hz		
999,99 Hz	0,01 Hz		
9,9999 kHz	0,0001 kHz	0,02% + 3	4.11
99,999 kHz	0,001 kHz	<600 kHz	1 Hz
999,99 kHz	0,01 kHz		

Hinweise für Frequenzspezifikationen:

- 1 Das Eingangssignal ist niedriger als das Produkt 20.000.000 V x Hz (Produkt von Spannung und Frequenz); Überlastschutz: 1.000 V.
- 2 Bei Frequenzmessungen wählt das Multimeter automatisch den geeigneten Bereich.

Arbeitszyklus- und Impulsbreitenspezifikationen

Tabelle 7-11 Arbeitszyklus- und Impulsbreitenspezifikationen

Funktion	Mode	Range	Auflösung	Genauigkeit (Bei Full Scale)
Arbeitszyklus —	DC-Kopplung	0,01% to 99,99%	-	0,3% pro kHz + 0,3%
	AC-Kopplung	5% to 95%	-	0,3% pro kHz + 0,3%

7 Spezifikationen

Tabelle 7-11 Arbeitszyklus- und Impulsbreitenspezifikationen (Fortsetzung)

Funktion	Mode	Range	Auflösung	Genauigkeit (Bei Full Scale)

Hinweise für Arbeitszyklusspezifikationen:

- 1 Die Genauigkeit für den Arbeitszyklus und die Impulsbreite basiert auf einer 5-V-Rechteckwelleneingabe in den DC-5-V-Bereich.
- 2 Bei einer AC-Kopplung kann der Arbeitszyklusbereich für eine Signalfrequenz > 20 Hz gemessen werden.

Impulabraita	-	500 ms	0.01 ms	0.2% + 3
Impulsbreite —	-	2000 ms	0.1 ms	0.2% + 3

Hinweise für Impulsbreitenspezifikationen:

- 1 Die Genauigkeit für den Arbeitszyklus und die Impulsbreite basiert auf einer 5-V-Rechteckwelleneingabe in den DC-5-V-Bereich.
- 2 Positive oder negative Impulsbreite muss größer sein als 10 μs und der Bereich des Arbeitszyklus sollte berücksichtigt werden. Der Bereich der Impulsbreite wird durch die Frequenz des Signals bestimmt.

Spezifikationen für Frequenzempfindlichkeit

Für Spannungsmessungen

Tabelle 7-12 Frequenzempfindlichkeits- und Triggerpegelspezifikationen für Spannungsmessungen

	Mindestempfindlichkeit (RMS Sinuskurve)			Auslöserniveau für DC-Kopplung			ung	
Input				Modelln	ummer			
Range ^[1]	U12	U1251B U1252B			U12	251B	U1252B	
	20 Hz - 100 kHz	>100 kHz - 200 kHz	20 Hz - 200 kHz	>200 kHz - 500 kHz	< 100 kHz	>100 kHz - 200 kHz	< 100 kHz	> 100 kHz - 500 kHz
50,000 mV	10 mV	15 mV	10 mV	25 mV	10 mV	15 mV	10 mV	25 mV
500,00 mV	25 mV	35 mV	70 mV	150 mV	60 mV	70 mV	70 mV	150 mV
1000,0 mV	40 mV	50 mV	120 mV	300 mV	100 mV	150 mV	120 mV	300 mV
5,0000 V	0,25 V	0,5 V	0,3 V	1,2 V	0,5 V/ 1,25 V (< 100 Hz)	0,6 V	0,6 V	1,5 V

 Tabelle 7-12
 Frequenzempfindlichkeits- und Triggerpegelspezifikationen für Spannungsmessungen (Fortsetzung)

		Mindestemp (RMS Sin			Auslöserniveau für DC-Kopplung				
Input		Modellnummer							
Range ^[1]	U12!	U1251B U1252B			U12	51B	U12	252B	
	20 Hz - 100 kHz	>100 kHz - 200 kHz	20 Hz - 200 kHz	>200 kHz - 500 kHz	< 100 kHz	>100 kHz - 200 kHz	< 100 kHz	> 100 kHz - 500 kHz	
50,000 V	2,5 V	5 V	3 V	5 V	5 V	6 V	6 V	15 V	
500,00 V	25 V	-	30 V < 100 kHz	-	50 V	-	60 V	-	
1000,0 V	50 V	-	50 V < 100 kHz	-	300 V	-	120 V	-	

Hinweise für Frequenzempfindlichkeits- und Triggerpegelspezifikationen für Spannungsmessungen:

- 1 Maximaler Eingang für angegebene Genauigkeit = 10 × Bereich oder 1,000 V
- 2 Das Eingangssignal ist niedriger als das Produkt von 20.000.000V-Hz

Für Stromstärkemessungen

 Tabelle 7-13
 Frequenzempfindlichkeitsspezifikationen für Stromstärkemessungen

Innut Dange	Mindestempfindlichkeit (R.M.S. Sinuskurve)
Input Range	20 Hz – 20 kHz
500,00 μA	100 μΑ
5000,0 μΑ	250 μΑ
50,000 mA	10 mA
440,00 mA	25 mA
5,0000 A	1 A
10,000 A	2,5 A

Spezifikationen für Spitzenwerthalten

 Tabelle 7-14
 Spitzenwerthalten-Spezifikationen für DC-Spannung- und Stromstärkemessungen

Signalbreite	Genauigkeit Für DC-mV/spannung/stromstärke
Einmaliges Signal > 1 ms	2% + 400 für alle Bereiche
Sich wiederholendes Signal > 250 μ s	2%+1000 für alle Bereiche

Spezifikationen für Frequenzzähler (U1252B)

Tabelle 7-15 Frequenzzählerspezifikationen (Dividieren durch 1)

Bereich	Auflösung	Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer)	Empfindlichkeit	Min. Eingangsfrequenz
99,999 Hz	0,001 Hz	0,02% + 3 ^[1]		
999,99 Hz	0,01 Hz		100 mV R.M.S.	
9,9999 kHz	0,0001 kHz			0.5 Hz
99,999 kHz	0,001 kHz			0,3 112
999,99 kHz	0,01 kHz		200 mV R.M.S.	
9,9999 MHz	0,0001 MHz	− < 985 kHz		

Tabelle 7-16 Frequenzzählerspezifikationen (Dividieren durch 100 [4])

Bereich	Auflösung	Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer)	Empfindlichkeit	Min. Eingangsfrequenz
9,9999 MHz	0,0001 MHz	0,002 % + 5,	400 mV R.M.S.	1 8411
99,99 MHz	0,001 MHz	< 20 MHz	600 mV R.M.S.	1 MHz

Hinweise für Frequenzzählerspezifikationen:

- 1 Alle Frequenzzähler sind bei der Messung von Signalen mit niedriger Spannung und niedriger Frequenz fehleranfällig. Abschirmung der Eingänge von externem Rauschen ist entscheidend für die Minimierung der Messfehler. Bei Nicht-Rechteckwellensignalen müssen 5 zusätzliche Zähler hinzugefügt werden.
- 2 Das maximale Messniveau beträgt < 30 Vpp.
- 3 Die Mindestmessfrequenz im unteren Frequenzbereich wird über die Einschaltoption festgelegt, um die Messrate zu beschleunigen.
- 4 Auf Sekundäranzeige angegeben.

Rechteckwellenausgabe für U1252B

Tabelle 7-17 Spezifikationen für Rechteckwellenausgabe

Output ^[1]	Range	Genauigkeit
Frequenz	0,5, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 480, 600, 800, 1200, 1600, 2400, 4800 Hz	0,005% x output frequency + 2 counts
Arbeitszyklus ^{[2][4][5]}	0,39% — 99,60%	± 0,398% von Full Scale ^[3]
Impulsbreite ^{[2][4][6]}	1/Frequenz	0,2 ms + (Bereich/256)
Amplitude	Festgelegt 0 bis +2,8 V	± 0,2 V

7 Spezifikationen

Tabelle 7-17 Spezifikationen für Rechteckwellenausgabe

Hinweise zu Spezifikationen für die Rechteckwellenausgabe:

- 1 Ausgangsimpedanz 3,5 k Ω maximal.
- 2 Positive oder negative Impulsbreite muss größer sein als 50 μs, um den Arbeitszyklus oder die Impulsbreite unter verschiedenen Frequenzen einzustellen. Anderenfalls weichen Genauigkeit und Bereich von der Definition ab.
- 3 Fügen Sie für Signalfrequenzen über 1 kHz zur Genauigkeit 0,1% pro kHz hinzu.
- 4 Die Genauigkeit für den Arbeitszyklus und die Impulsbreite basiert auf einer 5-V-Rechteckwelleneingabe ohne Divisionssignal.
- 5 Der Arbeitszyklus kann für 256 Schritte eingerichtet werden, und jeder Schritt beträgt 0,390625% pro kHz.
- 6 Die Impulsbreite kann für 256 Schritte eingerichtet werden, und jeder Schritt besteht aus 1/ (256 x Frequenz).

Betriebsspezifikationen

Anzeigen der Aktualisierungsrate (ungefähr)

Tabelle 7-18 Anzeigen der Aktualisierungsrate (ungefähr)

Funktion	Häufigkeit/Sekunde
AC V	7
AC V + dB	7
DC V (V oder mV)	7
AC V (V oder mV)	7
AC+DC V (V oder mV)	2
Ω/nS	14
Diode	14
Kapazität	4 (< 100 μF)
DC A (μA, mA, oder A)	7
AC A (μA, mA, oder A)	7
AC+DC A (μA, mA, oder A)	2
Temperatur	6
Frequenz	1 (> 10 Hz)
Arbeitszyklus	0,5 (> 10 Hz)
Impulsbreite	0,5 (> 10 Hz)

HINWEIS

Die digitalen Handmultimeter U1251B und U1252B verfügen über **keine** Echtzeituhr. Es kann nur **EIN** Wert pro Sekunde protokolliert werden.

7 Spezifikationen

Eingangsimpedanz

Tabelle 7-19 Eingangsimpedanz

Funktion	Bereich	Eingangsimpedanz
DC-Spannun ^{[1][3]}	50,000 mV	10,00 MΩ
	500,00 mV	10,00 MΩ
	1000,0 mV	10,00 MΩ
	5,0000 V	11,10 MΩ
	50,000 V	10,10 MΩ
	500,00 V	10,01 MΩ
	1000,0 V	10,001 MΩ
	50,000 mV	10,00 MΩ
_	500,00 mV	10,00 MΩ
_	1000,0 mV	10,00 MΩ
AC-Spannung ^[2]	5,0000 V	10,00 MΩ
_	50,000 V	10,00 MΩ
_	500,00 V	10,00 MΩ
	1000,0 V	10,00 MΩ
AC+DC-Spannung ^[2]	50,000 mV	10,00 MΩ
	500,00 mV	10,00 MΩ
	1000,0 mV	10,00 MΩ
	5,0000 V	11,10 MΩ // 10 MΩ
	50,000 V	10,10 MΩ // 10 MΩ
_	500,00 V	10,01 MΩ // 10 MΩ
_	1000,0 V	10,001 M Ω // 10 M Ω

Hinweise für Eingangsimpedanz:

- 1 Im Bereich zwischen 5 V und 1.000 V die angegebene Eingangsimpedanz parallel zu 10 M Ω bei dualer Anzeige.
- 2 Die angegebene Eingangsimpedanz (nominell) in parallel zu <100 pF.
- 3 Im Bereich von 5 V bis 1.000 V entspricht die angegebene Eingangsimpedanz 10 MΩ, wenn die Eingangsspannung >+3 V oder <–2 beträgt [nur gültig für das digitale Handmultimeter Agilent U1252B].

www.agilent.com

Kontaktdaten

Um unsere Services, Garantieleistungen oder technische Unterstützung in Anspruch zu nehmen, rufen Sie uns unter einer der folgenden Telefonnummern an:

Vereinigte Staaten:

(Tel) 800 829 4444 (Fax) 800 829 4433

Kanada:

(Tel) 877 894 4414 (Fax) 800 746 4866

China:

(Tel) 800 810 0189 (Fax) 800 820 2816

Europa:

(Tel) 31 20 547 2111

Japan:

(Tel) (81) 426 56 7832 (Fax) (81) 426 56 7840

Korea:

(Tel) (080) 769 0800 (Fax) (080) 769 0900

Lateinamerika:

(Tel) (305) 269 7500

Taiwan:

(Tel) 0800 047 866 (Fax) 0800 286 331 Andere Länder im Asien-Pazifik-Raum:

(Tel) (65) 6375 8100 (Fax) (65) 6755 0042

Oder besuchen Sie uns im Internet: www.agilent.com/find/assist

Änderungen der Produktspezifikationen und -beschreibungen in diesem Dokument vorbehalten. Aktuelle Änderungen finden Sie auf der Agilent Website.

© Agilent Technologies, Inc., 2009 – 2012

Gedruckt in Malaysia Neunte Auflage, 12. September 2012

U1251-90037

